A ADLINK

4V,
‘42,“5»\/0 R[EX
~ OPENSPLICE

Tuner Guide
Release 6.x

CONTENTS

1 Preface 1
1.1 About The Vortex OpenSplice Tuner Guide 1
1.2 Intended Audience L e e e e e e e e 1
1.3 Organisation L L e e e e e e e e e e 1
1.4 ConventionS v . v i i i e e e e e e e e e e e 1

2 Introduction 3
2.1 General Description e e 3

3 Using the Vortex OpenSplice Tuner 5
3.1 Starting and Stopping the Tuner L. 5

3.1.1 Starting Tuner Using Launcher 5

3.1.2 Starting Tuner Using Command Line 5
3.1.2.1 Solarisand Linux L 6

3.1.22 0 WiIndows . . . L L e e 6

3.1.3 Graphical User Interface Conventions 6

314 MainWindow L e e e 7

315 Shutdown 8

3.2 Connection Management vttt e e e e e e e e e e e e e e e e e 8
32.1 Connection Types e 8

322 OpenaConnection e 9
3.2.2.1 Connection History 9

323 CloseaConnectiono i i ittt ittt e 10

3.3 Entity Information L L e e e e e e e e e 10
33,1 Attributes oL e e e e e 12

332 Status e e e e e e e e e e e e 13

333 QOS . 13
333,01 Inspect QoS e e e e e 14

3332 Modify QoS 14

334 DataType o o e e e e e e e e 15

335 Statistics e e e 16

3.4 Entity Relationships 16
3.4.1 Enable and Disable Displaying Relationships, 17

3.4.2 Refresh Relationships e e e 18

3.5 DatalInjection and Consumption Lo e e e e e e e e e e e 18
3.5.1 CreatingaPublisher L 18

352 Creatinga Writer e 20

353 Creatingasubscriber e 21

3,54 CreatingaReader e e e e e e e 22

3.5.5 CreatingaReaderWriter e e e e 23

3.6

3.7

3.8

39

3.5.5.1 Partition Expression e 23

3.5.5.2 Existing Partition e e 24

3.5.6 Creating a Snapshot of a Reader Database 25
3.5.7 Creating a Snapshot of Writer History Cache 26
35.8 Delete Entity L e 26
359 InjectingData oL e e 26
3.59.1 Injecting Data Usinga Writer 27
3.5.9.2 Injecting Data Using a Reader-Writer 29
3.5.9.3 Detailed Reader-Writer window 31

35.10 Consuming Data e 32
3.5.10.1 Consuming Data UsingaReader 32
3.5.10.1.1 Sample Information View 33

35.10.1.2 UserDataView e 34

3.5.10.1.3 Show details of data that contains a collection type 34

35.10.1.4 SortingData e 34

35.10.1.5 Filters oo e 34

3.5.10.1.6 Reordering Columns 35

3.5.10.1.7 Removing Columns e 35

3.5.10.1.8 ConsumptionMode e 35

3.5.10.1.9 Monitoring L. e 35

35.10.1.10 ClearData e 36

3.5.10.2 Inspecting Data in a Reader Database Snapshot 36
3.5.10.3 Inspecting Data in a Writer History Snapshot 37
3.5.10.4 Consuming Data Using a Reader-Writer 37
3.5.10.5 Injecting and Consuming Data With Coherent and Ordered Access 38
3.5.10.5.1 Publishing CoherentSets 38

35.10.5.2 AccessDataOnReaders 39

Exporting and Importing e e 40
3.6.1 ExportMetadata e e e e e e e e e e 40
3.6.2 ExportData e e e e e e 41
3.6.2.1 Existing Partition L o 41
3.6.2.2 Partition Expression 42
3.6.2.3 From ExistingReader 43

3.6.3 ImportMetadata e e e e e e e e e 43
3.64 ImportData L e e e e e e e e 44
3.6.4.1 Original Partition(s) 0 . e e 44
3.6.4.2 Existing Partition L o 45
3.6.4.3 Partition Expressiono e 46
Preferences e 47
37.1 Attributes Tabo e 48
3.7.1.1 Auto Update Entity information 48
3.7.1.2 Auto Update Entity Tree 48
3.7.1.3 Default Entity Tree Type« o o ittt 48
3.7.1.4 Log@ing e e e 48
3.7.1.5 Datatype Content Type o 0 i e e e e e 48
3.7.1.6 Display Entity Relations e 49
3.7.1.77 DisplayInternals oL 49

372 TopicFiltersTab 49
QOS Profiles e e e e e e e e e 49
3.8.1 QoSProfilewindow e e e 50
Support for Google Protocol Buffers 51
39.1 About Google Protocol Buffersin Tuner 51
39.2 Viewingtypeevolutions e 51
3.9.3 Reading protocol buffer topics 52

4 Contacts & Notices
4.1 Contacts e e e e e e e e
42 NOHCES . . . v v o e e e e e e e e

CHAPTER
ONE

PREFACE

1.1 About The Vortex OpenSplice Tuner Guide
The Tuner Guide describes the Vortex OpenSplice Tuner features and how they should be used. The Vortex OpenSplice

Tuner is included with the OpenSplice product.

The Vortex OpenSplice Tuner provides facilities for monitoring and controlling OpenSplice and the applications that
use Vortex OpenSplice for the distribution of data.

1.2 Intended Audience

The Tuner Guide is intended to be used by all Vortex OpenSplice users, including programmers, testers, system de-
signers and system integrators.

1.3 Organisation

This Guide is organised in two parts.
The Introduction provides a brief, high-level description of the OpenSplice Tuner.

The main section, Using the OpenSplice Tuner, describes how to use the OpenSplice Tuner.

1.4 Conventions

The icons shown below are used in the Vortex product documentation to help readers to quickly identify information
relevant to their specific use of Vortex OpenSplice.

Tuner Guide, Release 6.x

%)
s)
S

Meaning

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Windows Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

+

C++ language specific.

o)
H*

C# language specific.

SEEERR

Java

Java language specific.

1.4. Conventions 2

CHAPTER
TWO

INTRODUCTION

This section describes the Vortex OpenSplice Tuner.

2.1 General Description

Vortex OpenSplice Tuner has been implemented in the Java language. It is possible to use it on every platform where a
Java Virtual Machine (JVM) implementation is available. That means that Vortex OpenSplice Tuner does not require
OpenSplice to be available on the local system.

Vortex OpenSplice Tuner is able to connect to one specific OpenSplice DDS domain at one specific node, both locally
and remotely. It is possible to simultaneously connect one or more Vortex OpenSplice Tuners to a specific domainand
node.

The diagram below shows an overview of a Vortex OpenSplice Tuner process connecting locally to a Vortex Open-
Splicefederation (shared memory deployment) on one computing node. (Typically, there are many nodes within a
system.)

Vortex OpenSplice Tuner Local Connection:

Vortex OpenSplice Tuner Local Connection

Tuner Guide, Release 6.x

Ex. Connection URI:
file://ospl.xml

OpenSplice

TUNER

Computing Node

App-1 Process

App-2 Process

Shared Memory

Domain
Service Process

Tuner
Service Process

Network/DDSI2
Service Process

Durability
Service Process

Service Process

DBMS

"

v

network

=

The diagram below shows an overview of a Vortex OpenSplice Tuner process connecting remotely to a Vortex Open-
Splice application (single process deployment). The Tuner service (aka the SOAP service) must be enabled in the

Vortex OpenSplice configuration file to allow remote connection for tools.

Vortex OpenSplice Tuner Remote Connection:

Ex. Connection URI:
http://10.2.0.59:52419

OpenSplice
TUN ERQQ

Vortex OpenSplice Tuner Remote Connection

Single Process Application

Application code

In-process Heap Memory

Config
(XML)

Domain
Service Threads

Tuner
[Service Threads|

Network/DDSI2
Service Threads)|

Durability
Service Threads|

DBMS
Service Threads

"

u
Port 52419
L1

Tuner SOAP traffic :

Regular DDS traffic

<

network

P

While the figure details a remote connection to a single process deployment, one can also use the remote connection
capability to connect to a shared memory deployment in the exact same way.

2.1. General Description

CHAPTER
THREE

USING THE VORTEX OPENSPLICE TUNER

This section describes how to use the Vortex OpenSplice Tuner, including how to start, stop, perform connection man-
agement, manage entities and data, and perform other related tasks.

3.1 Starting and Stopping the Tuner

Vortex OpenSplice Tuner has been implemented in the Java language. The supported platforms for the Tuner are listed
in the Release Notes in the section ‘Supported Platforms’. The Tuner will work on all platforms that support JAVA
(SAJ) SDK.

3.1.1 Starting Tuner Using Launcher

The Vortex OpenSplice Launcher application provides easy access to the Vortex OpenSplice tools, configurations,
documentation and examples.

Vortex OpenSplice Tuner can be quickly started using the Vortex OpenSplice Launcher application.

Instructions for starting Launcher can be found in the ‘Launcher’ section of the OpenSplice_GettingStartedGuide.pdf
document.

In Launcher, select the Tools tab, and select the Tuner button. This will open the Tuner application.

3.1.2 Starting Tuner Using Command Line
The Vortex OpenSplice Tuner provides a command line instruction for specifying the domain config file that the tuner
needs to connect to.
The option is
-uri=<URI>

An example command:

% ospltun -uri=$0SPL_URI

The following subsections provide the startup procedures for the verified operating systems.

Tuner Guide, Release 6.x

3.1.2.1 Solaris and Linux

Before starting Vortex OpenSplice Tuner, the Vortex OpenSplice environment must be set correctly. This can be realized
by starting a shell and executing the release.com application located in the root directory of the OpenSplice installation
(from now on referred to by <OSPL_HOME>):

% . <OSPL_HOME>/release.com

Once the environment has been initialized correctly, the Vortex OpenSplice Tuner can be started by typing the following
command in the shell:

% ospltun

When Vortex OpenSplice Tuner is started, the main window is presented to the user. (See the illustration 7he Main
Tuner Window.)

3.1.2.2 Windows

The Vortex OpenSplice environment must be set correctly before starting the Vortex OpenSplice Tuner. This is done
by opening a command prompt and executing the release.bat file which is located in the root directory of the Vortex
OpenSplice installation (herein referred to by <OSPL_HOME>).

% . <OSPL_HOME>/release.bat

The Vortex OpenSplice Tuner can be started by typing the following command in the command prompt after the envi-
ronment has been initialized correctly:

% ospltun

The tuner’s main window is displayed when the Vortex OpenSplice Tuner is started (see The Main Tuner Window).

3.1.3 Graphical User Interface Conventions

Some conventions are used for all graphical components of the Vortex OpenSplice Tuner. Each window of Vortex
OpenSplice Tuner provides a menu bar. Each menu bar has three menus:

File - The File menu always provides an option to close the window (File > Close).

Edit - The Edit menu provides facilities to interact with the OpenSplice system.

View - The View menu provides options to modify the view on data in the window.

The View menu also provides an option to look up the main window. This can be achieved by choosing View > Show
main window in the menu bar. This results in the displaying and focusing of the main window.

All windows are also equipped with a status bar. This status bar is used by Vortex OpenSplice Tuner to provide the
user with information about the status or to report feedback about actions taken by the user. The status bar is colored
yellow when a warning message is displayed and colored red when an error message is displayed.

Sometimes a status bar also contains a ‘light’, which is located in the right corner of the status bar. This light provides
information about the availability of the entities where the window depends on. If these entities are available, the light
is colored green. If not, then it is colored red.

3.1. Starting and Stopping the Tuner 6

Tuner Guide, Release 6.x

A lot of menu items in the menus of several windows of OpenSplice Tuner can also be triggered using a combination
of keyboard keys (short-cut). If such a keyboard shortcut is available for a specific menu item, it is displayed at the
right side of the menu item in blue. The specific keyboard shortcuts are not discussed in this manual.

3.1.4 Main Window

When Vortex OpenSplice Tuner is started the main window appears.
The Main Tuner Window
:Q Vortex OpenSplice Tuner (httpy//10.2.... l = | B -

File Edit View
Vortex Open Splice Tuner (http:/10.2.0.93:50000)

-

Dy

o=] Participant: Built-in participant
D |Participant: Vortex OpenSplice Tuner|
¢ [Participant; demo_ishapes.exe =2368=
¢ [Publisher: publisher
[Partition: <DEFAULT>
¢ [CJ Writer: Circle_DataWriter
[y Topic: Circle r
D Topic: Circle
D Service: cmsoap
9 [Sewice: ddsi2
o] Publisher; ddsi2 bubble publisher
o= [Publisher: ddsi2 builtin topic publisher i
o [Subscriber; DDSIZBuiltinSubscriber)
o= [Subscriber: DDSIZ2BuiltinSubscribert
¢] Subscriber: nelworkSubscriber
D NelworkReader: nelworkReader
[Topic: CMDataReader
[y Topic: CMDataWriter

|
participant view

| Ready | 1]

e

The title bar displays Vortex OpenSplice Tuner (<connected_domain_uri>).

The entity tree in the main window displays the entities in OpenSplice as well as their relationships. The selected view
determines which relationships are displayed (see Entity Relationships). The current view name is displayed in the
bottom right corner of the entity tree.

The status bar provides information about the status of the window or about the action that is currently being executed.
The status bar of the main window is equipped with a ‘light’” (located at the right corner of the status bar). This ‘light’
provides information about the connection. If OpenSplice Tuner is currently connected to a OpenSplice domain, it is
colored green (as in the illustration above). If not, it is colored red.

The Window List

3.1. Starting and Stopping the Tuner 7

Tuner Guide, Release 6.x

-

-
Jio; Vortex OpenSplice Tuner (httpi//10.2.093:50.. L= | B [
File Edit View
Vortex OpenSplice Tuner (http:/M0.2.0.93:50000) |v
Vortex OpenSplice Tuner (hitp://10.2.0.93:50000)
Subscriber: Builtin subscriber | Entity info
Topic: DCPSHeartbeat | Entity info
DCPSHeartbeat@__ BUILT-IN PARTITION__ | Writer
DCPS Subscription@durabilityPartition | Reader\Writer (take modej
d_nameSpaces@durabilityPartition | ReaderSnapshot{af8a60) (t3
& [Topic: DCPSCandMCommand T
o= 9 Topic: DCPSDelivery
o 3 Topic: DCPSHeartbeat
o=] Topic: DCPSParticipant
o Tanic: DCPSPublication

The window list of the main window is a pull-down menu, which contains all OpenSplice Tuner windows. The values
in the window list match the titles of the windows. If an entry in the list is selected, the associated window is opened
and it receives the focus. When a new window is opened, it is added to the window list; it is removed from this list
when the window is closed again.

3.1.5 Shutdown

OpenSplice Tuner can be exited at any time by choosing File > Exit in the menu bar of the main window or by clicking
the ‘close’ (X) icon at the top-right corner of the main window.

When OpenSplice Tuner is currently connected to a specific OpenSplice domain (see Connection Management), it asks
for confirmation to close that connection.

The Confirm Exit Dialog
Confirm exit &]

Iz‘ You are still connected. Are you sure you want to exit?

3.2 Connection Management

To be able to monitor and control the OpenSplice system, OpenSplice Tuner needs access to a specific domain. This
section describes the various connection types that are supported by OpenSplice Tuner, including how a connection to
a specific OpenSplice domain and node can be opened and how a connection can be closed.

3.2.1 Connection Types

OpenSplice Tuner offers the possibility to connect to a specific domain on a specific node in two different ways:

Local - OpenSplice Tuner connects to a specific domain that is available on the same node as where it is started. For
local connections, OpenSplice Tuner connects to an OpenSplice domain using the Java Native Interface (JNI).
This is the default connection type.

Remote - OpenSplice connects to a specific domain that is available on a node in the same network as the node where
it started. For remote connections, OpenSplice Tuner connects to a OpenSplice domain using the Simple Object
Access Protocol (SOAP).

3.2. Connection Management 8

Tuner Guide, Release 6.x

The Tuner determines the connection type based on the given domain URI/URL in the connection dialog (see Open a
Connection).

ﬂ A local connection is preferred over a remote connection because communication with OpenSplice is faster and
does not cause any network traffic. It is therefore less intrusive than a remote connection and it improves the performance
of OpenSplice Tuner.

ﬂ By using a remote connection, OpenSplice Tuner also supports monitoring and controlling OpenSplice on em-
bedded platforms that do not provide a graphical user interface (VxWorks for example)

3.2.2 Open a Connection

OpenSplice Tuner can only open a connection when it is not currently connected.

To open a connection, choose File > Connect in the menu bar. This action opens a dialog that asks the user to provide
a domain URIL.

This domain URI can represent any of the following values:
a: Integer Domain ID (e.g. 1)
b: Domain URI (e.g. file:///home/ADLINK/ospl.xml)
c: SOAP service URL (e.g. http://192.168.1.20:8000)
Value b can be selected from a file chooser. Click the Browse button to open a file chooser.
* Values a and b imply a local connection type.
 Value c implies a remote connection type.

When value c¢ is used, make sure that the OpenSplice Control & Monitoring SOAP (CMSOAP) service is running at
the supplied SOAP service URL.

When the OK button is clicked, OpenSplice Tuner tries to open a connection to the domain that is associated with the
supplied domain URI. If the domain exists, OpenSplice Tuner connects to that domain. If it does not exist, the message
‘Supplied URI not available’ appears in the status bar of the dialog window.

When domain URI value c is used and the CMSOAP service and/or OpenSplice is not running at the specified node
URL, the message ‘IOException: Connection refused’ appears in the status bar of the dialog window.

The Connect operation can be cancelled by clicking the Cancel button. This makes the dialog window close. Open-
Splice Tuner is still disconnected afterwards.

3.2.2.1 Connection History

OpenSplice Tuner keeps a history of connections. It remembers four connections per connection at most. The connec-
tion history is located in the File menu between the Disconnect and Exit menu items.

Connection History

3.2. Connection Management 9

Tuner Guide, Release 6.x

F |
@ Vortex OpenSplice Tuner (not connec... | = | E &J
[le| Edit View

Connect Shift-C |v

hitp:i110.2.0.112:50000 Shift-1
hitp:/10.2.0.93:50000 Shift-2
file:liC:\cfglo...sp_nativeRT.xml Shift-2
file:/C:\cfglo..._shmem_ddsixml Shifi-2
About Shift-4
Exit Alt-F4

When a specific connection is displayed in the history in the File menu it does NOT mean that it is currently connectable.

A connection in the history list can be opened by clicking File > <connection> in the menu bar. If the connection is
available, it is opened. The result of the action is displayed in the status bar of the main window.

3.2.3 Close a Connection

Once a connection is opened, it can be closed again. This can be achieved by clicking File > Disconnect in the menu
bar. The result of the disconnect action is displayed in the status bar of the main window.

3.3 Entity Information

To be able to use the OpenSplice system for the distribution of data, applications need to create all kinds of entities.
Entities are, for instance: domain participants, subscribers and publishers. The OpenSplice system administers these
entities. Each entity type has its own characteristics (attributes, status, QoS policies, data type) and relations to other en-
tities. OpenSplice Tuner provides facilities to observe entities in the OpenSplice system and browse over their (mutual)
relationships using different views (see Entity Relationships).

OpenSplice Tuner displays internal OpenSplice entities. Most entities map on a DCPS entity, but some entities do not.
The table below provides an overview of OpenSplice entities that can be shown by OpenSplice Tuner as well as how
they map on DCPS entities.

Mapping of OpenSplice Entities on DCPS Entities

3.3. Entity Information 10

Tuner Guide, Release 6.x

DCPS Entity OpenSplice Entity Description

DomainParticipant Participant A DCPS DomainParticipant is presented as a Participant
in OpenSplice.

Service Represents a service of OpenSplice. A service is a special

OpenSplice application that adds functionality to Open-
Splice. Services that are currently available are:
Networking - Realizes the communication between sepa-
rate OpenSplice nodes.

Durability - Realizes the durable properties of data in a
OpenSplice system.

CMSOAP - service that allows a remote connection of
OpenSplice Tuner to the current OpenSplice node.

Topic Topic A DCPS Topic is also presented as a Topic in OpenSplice.
Partition Partition DCPS does not specify a Partition as an Entity, but as a
policy in the quality of service of a Publisher and a Sub-
scriber. In OpenSplice, however, it is presented as a Par-
tition entity.

Subscriber Subscriber A DCPS Subscriber is also presented as a Subscriber in
OpenSplice.
Publisher Publisher A DCPS Publisher is also presented as a Publisher in
OpenSplice.
Reader OpenSplice specifies a Reader as an abstract base Entity
for a DataReader and Query.
DataReader DataReader A DCPS DataReader is also presented as a DataReader in
OpenSplice.
ReadCondition Query A DCPS ReadCondition is presented as a Query in Open-
Splice.
NetworkReader Internal Reader type for the networking service.
DataWriter Writer A DCPS DataWriter is presented as a Writer in Open-
Splice.

ContentFilteredTopic View + Topic + Query | A DCPS ContentFilteredTopic is presented as a combina-
tion of a View, Topic and a Query.

MultiTopic View + Join + Topics (+ | A DCPS MultiTopic is presented as a combination of a
Query) View, Join, multiple Topics and possibly a Query.
WaitSet Represents an internal WaitSet object

To observe entity information, right-click on a specific entity in the entity tree of the main window. This will trigger a
popup menu that displays the possible actions for that entity. Choose Display Entity to observe the selected entity.

Display Entity Information

3.3. Entity Information 11

Tuner Guide, Release 6.x

F |
[y Vortex OpenSplice Tuner (http:/10.2... l = | E] S
File Edit View

Vortex OpenSplice Tuner (http://10.2.0.93:50000) |v

[(y Topic DCPSHeartbeat |
[7) Topic DCPSParticipant

[} Topic: DCPSPublication

D Topic: | Display Entity Ctrl-y
D Topic: | Display Entity relations

D Topic:| Display Entity relations {recursive)

D Topic: Create Reader-Writer 4
D Topic:

]
D Topic Export data
™ Topic: Export metadata Cirl-X

This action will create a new window with entity information. This new window consists of a menu bar and a certain
number of tabs. These tabs will be explained in the following sections.

3.3.1 Attributes

This tab is available for all entities. Each entity type has its own attributes. Some of them are available for all entity
types, others only for that specific entity type.

Entity Attributes

.
] Topic: DCPSPublication | Entity info = | B -

File Edit View
Attributes | Status | QoS | Datatype |~ Statistics |

Field name Field value
kind opic
name DCPSPublication
enabled true
key list userData.key.localld,userData. key.systemid
type name kernelModule:v_publicationinfo

b

Attributes that are available for every entity type are:
Kind - the entity type
Name - the entity name
Handle index and serial - the internal identification of the entity
Address - the heap memory address of the entity
Enabled - shows the state of the entity

Both handle index and serial as well as address are considered as internals and therefore are only displayed when the
Display internals configuration option in the OpenSplice Tuner preferences is set to true (see Preferences).

The illustration above shows the attributes for a Topic entity. Besides the default attributes, a Topic entity contains two
extra attributes:

Key list - represents the key list of the Topic (comma separated)

Type name - represents the type name of the Topic

3.3. Entity Information 12

Tuner Guide, Release 6.x

3.3.2 Status

Some entity types have a status. As the name says, it provides information about the communication status of the entity.
Entity types that have a communication status are:

* Subscriber
* Topic

* DataReader
* Writer

The status attributes depend on the type of the entity. The status of a specific entity can be resolved by clicking the
Status tab in the entity information window. The illustration below shows the status attributes of a Topic entity.

Entity Status

.
] Topic: DCPSPublication | Entity info o | B

File Edit View
Attributes | Status | QoS | Datatype | Statistics |

Mame Field Value
STATE 1]
INCONSISTENT_TOPIC total_count 0
INCONSISTENT_TOPIC total_count_change 0

L

The status information can be updated automatically. This can be achieved by setting the Auto update entity information
configuration option in the OpenSplice Tuner preferences.

3.3.3 QoS

OpenSplice relies on the use of Quality of Service (QoS). A QoS is a set of characteristics that controls some aspects
of the behaviour of OpenSplice.

QoS is comprised of individual QoS policies and is associated with a specific entity. The QoS policies depend on the
type of the entity. Entity types that are equipped with a QoS are:

* Participant

* Topic

* Subscriber

* Publisher

* DataReader
e Writer

The following subsections describe how the QoS of a specific entity can be inspected and how to modify a QoS.

3.3. Entity Information 13

Tuner Guide, Release 6.x

3.3.3.1 Inspect QoS

The illustration below shows the Quality of Service (QoS) of a specific Topic in OpenSplice. The QoS of a specific
entity is displayed in the QoS tab of the entity information window. The QoS of the entity can be inspected by clicking
the QoS tab in the entity information window. To refresh the QoS of the entity, the Ger button (located at the bottom-left
corner of the QoS tab) can be clicked when the QoS tab is selected.

Entity QoS

\
|| Topic: DCPSPublication | Entity info = |]

File Edit View
["atiributes | status | QoS | Datatype | Statistics

MName Field Value
TOPIC_DATA value null
DURABILITY kind TRANSIENT
DURABILITY_SERVICE _|senvice_cleanup_delay 00

DURABILITY_SERVICE _ |history_kind KEEPLAST
DURABILITY_SERVICE _ |history_depth 1

DURABILITY_SERVICE |max_samples
DURABILITY_SERVICE |max_instances -1
DURABILITY _SERVICE |max_samples_per_instance |-
DEADLINE period 2147483647 2147483647

LATENCY_BUDGET ___|duration
LIVELINESS kind [

LIVELINESS lease_duration 2 3647.2147463647
RELIABILITY kind RELIABLE

RELIABILITY mazx_blocking_time 0.1

RELIABILITY synchronous ralse

DESTINATION_ORDER _|kind BY_RECEPTION_TIMESTAMP
HISTORY kind KEEPALL

HISTORY depth -1

RESOURCE_LIMITS max_samples
RESOURCE_LIMITS max_instances -1
RESOURCE_LIMITS max_samples_per_instance |-

TRANSPORT_PRIORITY |value 0
LIFESPAN duration 2147483647.2147483647
OWNERSHIP kind SHARED

Get Set

3.3.3.2 Modify QoS

It is possible to modify the Quality of Service (QoS) settings of a specific entity. OpenSplice Tuner allows modification
of the QoS settings when the QoS tab of the entity information window is selected. Once an entity is enabled, not all
QoS policies can be modified any more. The values of the QoS policies that are not editable are colored gray. When
clicking on a value of a QoS policy that is currently editable (one of the cells located in the Value column), the contents
of that cell can be edited. During the editing, the contents of the cell are constantly validated. If the current input is
valid, the cell is colored orange and if not, it is colored red. To confirm the input, press Enter. The cell is then colored
white again. If the current input is not valid, it cannot be confirmed. To cancel the editing of the cell, press the Esc key.
The content of cell is reset to the value it had before the cell was edited and the cell is colored white again.

When all QoS policies have the desired value, the QoS can be applied to the entity by clicking the Set button (located
at the bottom-right corner of the QoS tab. The result of the action is displayed in the status bar of the window.

A The modification of a specific Quality of Service influences the behaviour of the entity it belongs to.

3.3. Entity Information 14

Tuner Guide, Release 6.x

3.3.4 Data Type

Some entity types have a data type or relate to one. The data type can be observed when the Data type tab is selected
in the entity information window.

Entity Data Type
|£| Topic: DCPSHeartbeat | Entity info @M
File Edit View
[“Attributes | Status | QoS |[Datatype | Statistics
Type Name kernelModule:v_heartbeatinfo il
typedef structv_gid_s {

c_ulong systemid;

c_ulong localld;

c_ulong serial;
Jv_gid;

typedef struct c_time {
c_long seconds;
¢_ulong nanoseconds;

}v_duration;
| S
Entity types that provide a data type are:
* Topic
e Writer

¢ DataReader

This tab displays the data type name, and the data type definition in plain text format. To make the text more readable,
the data type representation can be changed to HTML text format. This can be achieved by choosing View > Data type
representation > <Representation> in the Menu Bar.

Entity Data Type Representation

-~

)] Topic: DCPSPublication | Entity info AN X

File Edit | View |
Attributes Data type representation b O textiplain Alt-P
struct 1 Show main window shifts | @ textihtml AltH -
C_ARRAY<c_octet> value ;
} group_data:
struct v_writerLifecyclePolicy {
c_bool autodispose unregistered instances;
v_duration autopurge_suspended_samples_delay:
v_duration autounregister_instance delay;
} lifecycle;
c_bool alve;
} v_publicationInfo;

]

b

The default value of the data type representation can be modified. This can be achieved by setting the Datatype content
type configuration option in the OpenSplice Tuner Preferences.

ﬂ Plain text takes less processing time than HTML, but the HTML version is easier to read.

3.3. Entity Information 15

Tuner Guide, Release 6.x

3.3.5 Statistics

Some entity types keep track of statistical information. This information can be monitored in OpenSplice Tuner by
selecting the Statistics tab in the entity information window. The statistical information can be updated automatically.
This can be achieved by setting the Aufo update entity information configuration option in the OpenSplice Tuner pref-
erences.

The following entities have statistics:
* Reader
e Writer
* Durability

* Networking

* CMSOAP
Entity Statistics
|£| Service: cmsoap | Entity info AN X
File Edit View
Attributes | QoS | Stafistics |
Name Field Value
lasiReset 0s. 0 ns.(Wed Dec 31 19:00:00 EST 1969)

maxConnectedClients value 3
maxConnectedClients lastUpdate [1453824373s. 700109400 ns.(Tue Jan 26..
maxClientThreads value 2
maxClientThreads lastUpdate [1453824373s. 700109400 ns.(Tue Jan 26..
connectedClients 3
clientThreads 1
requestsHandled 22

Reset ‘requestsHandled’

Reset all

As well as monitoring statistical information, OpenSplice Tuner also provides facilities to reset (parts of) this informa-
tion. When right-clicking on a specific row in the table of the Statistics tab, a popup menu with two options appears
(see illustration above). The first option results in a reset of the selected counter. The second option results in a reset
of all statistical information of the entity.

3.4 Entity Relationships

To be able to observe how entities work together, it is necessary to observe their (mutual) relationships. OpenSplice
Tuner provides three different approaches to observe these relationships:

Participant view - Displays participant entities of the local node as top-level entities
Topic view - Displays topic entities as top-level entities
Partition view - Displays partition entities of the local node as top-level entities

Each view consists of a tree of entities. The layout of the entity tree in the main window is determined by the selected
view and the available entities in OpenSplice.

To change the view on entity relations, choose View > <View type> in the menu bar. The default view on startup is
determined by the Default entity tree type configuration option in the OpenSplice Tuner Preferences.

Choose Entity View

3.4. Entity Relationships 16

Tuner Guide, Release 6.x

,:Q Vaortex OpenSplice Tuner (http://10.2.... l = | B S

File Edit giew|

Vortex Ope O Participant Alt-1 - 00) |v
[Tog ® Topic Alt-2 -
[Tog O Partition Alt-3
[} Tog [Display Entity relations ~/-#

D Topic: CMPublisher
™ Tanic CMSuhscriber

3.4.1 Enable and Disable Displaying Relationships

By default, only top-level entities are displayed in a view. This means, for instance, that the topic view only displays topic
entities. It is also possible to observe all relationships of the top-level entities to other entities. When all relationships
need to be displayed, choose View > Display Entity relations in the menu bar (see Choose Entity View).

Besides enabling or disabling the displaying of all entity relations, it is also possible to enable or disable these relations
on entity level. This can be done by right-clicking on an entity in the entity tree and then choosing Hide Entity relations
to disable display and Display Entity relations to enable display.

Enable and Disable Entity Relations
[:_& Vortex OpenSplice Tuner (http://10.2.... l = | B[S]

File Edit View
Vortex OpenSplice Tuner (http://10.2.0.93:50000)

iy

9 [Topic: DCPSPublication
D DataReader. DCPSPublicationReader
o~ [DataReader: DCPSPublicationReader
[} DataReader; DCPSPublicationReader)
o~ [DataReader: DCPSPublicationReadert
D Partition: _ BUILT-IN PARTITION__
o= -] Partition: __NODE2167b326 BUILT-IN PARTI[|
o= [Writer. DCPSPublication\Writer
D Writer: ddsi2 DCP3Publication\Writer
o [Topic: DCPSSubscription
o [Top| Display Entity Chrl-Y
[Tor| Hide Entity relations
[Top Refresh Entity relations

o [Top
Vi 3 =
o 9 Top Create Reader-Writer
o= [Top| Export data b
&[] Top| Export metadata Chrl-x

o= [Topit d_newGroup

When the Display Entity relations check box is enabled in the View menu (see Choose Entity View), all entity relations
are displayed. By selecting Hide Entity relations on a specific entity, the displaying of relations can be disabled for that
specific entity. That will color the concerning entity gray in the entity tree.

The other way around is also possible. When the Display Entity relations check box is unchecked in the View menu, no
entity relations are displayed. By selecting Display Entity relations on a specific entity, the displaying of the relations
is enabled for that specific entity. That will color the concerning entity green in the entity tree.

ﬂ Disabling entity relations and only enabling the relations that need to be observed makes OpenSplice Tuner less
intrusive for OpenSplice.

3.4. Entity Relationships 17

Tuner Guide, Release 6.x

3.4.2 Refresh Relationships

Once the relationships have been resolved, by default they are not kept up to date.
Updates can be applied in two ways.
* By choosing Edit > Refresh entity tree in the menu bar the entire tree is refreshed.

» By right-clicking on an entity in the tree and choosing Refresh Entity relations the relations of that specific entity
can be refreshed (Enable and Disable Entity Relations).

ﬂ Refreshing entity relations on entity level rather then a complete refresh of the tree takes less processing time and
is less intrusive for OpenSplice.

Entity relations can also be updated automatically. This can be achieved by setting the Auto update entity tree config-
uration option in the OpenSplice Tuner Preferences.

3.5 Data Injection and Consumption

OpenSplice Tuner provides facilities for data injection and consumption. Data injection can be accomplished in several
ways:

* using an existing writer
* using a self-created writer
* using a self-created reader-writer

Creating a writer to inject data can be realized by creating a publisher followed by creating a writer or by creating a
reader-writer (see Data Injection and Consumption).

For consuming data, the following options are available:
* using an existing reader
* using a self-created reader
* using a self-created reader-writer
* inspecting the data in an existing reader database (consume data by making a snapshot of an existing reader)

* inspecting the history cache of an existing writer (consume data by making a snapshot of the history of an existing
writer)

The following sections describe how to perform these tasks.

3.5.1 Creating a Publisher

One way to inject data in OpenSplice is to create a publisher and writer. A publisher can be attached to one or more
partitions in the domain where OpenSplice Tuner is currently participating.

Main Window Edit Menu

3.5. Data Injection and Consumption 18

Tuner Guide, Release 6.x

F ki
.h Vaortex CpenSplice Tuner (http://10.2.... [EM

File gdit| View
Vorte Create Publisher celp [0.93:50000) |~

Create Subscriber Ctl-S E
Create Writer Crl-W
Create Reader Ctrl-R
Create Reader-Writer »

Display Entity Cirl-Y
Enable Entity Ctrl-N
Delete Entity Delete

Export data b
Export metadata Ctrl-X
Import data 3
Import metadata Ctrl-M

Refresh entity tree F5
Collect garbage F@

Ao rrarrarrg e r—

Preferences FF
|— T T 7 TS RETITERT

To create a publisher, choose Edit > Create Publisher in the menu bar of the main window (shown above), or right-click
on the OpenSplice Tuner participant in the entity tree and then select the Create Publisher item (see illustration below).

OpenSplice Tuner Participant Actions

F ki
h Vortex OpenSplice Tuner (http://10.2.... [Elﬂlg

File Edit View
Vortex OpenSplice Tuner (http:/10.2.0.93:50000) | -

D Participant: Built-in participant

D Participant. Yortex OpenSplice Tuner

[} senice] Display Entity Crl-y
[) senice Display Entity relations

[senice Display Entity relations (recursive)

[senicermams Publisher P
D Senice)
Create Subscriber Ctrl-5
Create Reader-Writer 4

Both of these actions will result in the display of the Create Publisher dialog.

Create Publisher dialog

3.5. Data Injection and Consumption 19

Tuner Guide, Release 6.x

|£| Create publisher |i‘_‘-z_hj

[Attributes | PublisherQoS |

Name |pub|isher |
Ok || Cancel |

|Please provide input.

The value provided in the Name field becomes the name of the publisher (as displayed in the entity tree).
The Qos settings of the publisher can be set on the PublisherQos tab.
The Partition name field on the PublisherQos tab determines the publisher’s partition(s).

To attach the publisher to multiple partitions, the comma (,) can be used as a separator and the asterisk (*) can be used
as a wild card. Partitions that do not already exist are created in OpenSplice, except for parts of the expression that
contain a wild card.

For example, the name part*, abc makes the publisher publish in all available partitions that start with part including
part itself and also in partition abc (the partition abc will be created if it does not already exist in the connected
OpenSplice domain).

The Presentation fields on the PublisherQos tab determines the publisher’s Presentation policy setting. This policy is
also an RxO policy, thus it affects QoS compatibility matching for readers and writers.

Additionally, Tuner supports coherent and ordered access. So if coherent_access is true, and the access_scope is TOPIC
or GROUP, then the option to publish coherent sets will be available when selecting the publisher. See Publishing
Coherent Sets.

When the OK button is clicked, the input is validated. If the input is correct, the publisher is created. The newly-
created publisher will appear in the entity tree (when entity relations are enabled; see Enable and Disable Displaying
Relationships). If the input is not correct, an error message will appear in the status bar of the dialog box.

The Create publisher action can be cancelled by clicking the Cancel button. In this case, no publisher will be created.

3.5.2 Creating a Writer

A writer can only be created if one or more publishers have already been created. A writer can be created by choosing
Edit > Create Writer in the menu bar (see Main Window Edit Menu) or right-clicking on a created publisher entity in
the tree then choosing the Create Writer item.

Both of these actions will result in the display of the dialog box shown below.

Create Writer dialog

3.5. Data Injection and Consumption 20

Tuner Guide, Release 6.x

| £/ Create writer { =1 ﬁr
f Attributes r WriterQo S |

Name |writer |

Publisher |puhlisher ‘v‘

Topic |d_ ‘ v ‘

| Ok | | Cancel

|Please provide input.

%

The Name field determines the name of the writer (as displayed in the entity tree). The Publisher field determines to
which publisher the writer will be attached (determines the partition(s) the writer will write its data in). The Topic field
determines which topic the writer will be able to write.

By default the QoS settings of the Writer are copied from the Topic it writes. However, it is also possible to override
these settings by specifying its own QoS settings/profile (see QoS Profiles) in the WriterQoS tab.

When the OK button is clicked, the input is validated. If the input is correct, the writer is created. The newly-created
writer will appear in the entity tree (when entity relations are enabled; see Enable and Disable Displaying Relation-
ships).

If the input is not correct, an error message will appear in the status bar of the dialog window.

The Create writer action can be cancelled by clicking the Cancel button. In this case, no writer will be created.

3.5.3 Creating a subscriber
One way to consume data from OpenSplice is to create a subscriber and a data reader. A subscriber can be attached to
one or more partitions in the domain where OpenSplice Tuner is currently participating.

To create a subscriber, choose Edit > Create Subscriber in the menu bar of the main window (see Main Window Edit
Menu) or right-click the Vortex OpenSplice Tuner participant in the entity tree then choose the Create Subscriber item.

Both of these actions will result in the display of the dialog box shown below.

Create Subscriber dialog

F h|
| £/ Create subscriber | = |

| Attributes | SubscriberQos$ |
Name |subscriber |
| Ok | | Cancel
|Please provide input.

The value provided in the Name field becomes the name of the subscriber (as displayed in the entity tree). The Qos
settings of the subscriber can be set on the SubscriberQos tab. The Partition name field in the SubscriberQos tab
determines the subscriber’s partition(s).

3.5. Data Injection and Consumption 21

Tuner Guide, Release 6.x

To attach the subscriber to multiple partitions, the comma (,) can be used as a separator and the asterisk (*) can be
used as a wild card. Partitions that do not already exist are created in OpenSplice, except for parts of the expression
that contain a wild card.

The Presentation fields on the PublisherQos tab determines the publisher’s Presentation policy setting. This policy is
also an RxO policy, thus it affects QoS compatibility matching for readers and writers.

Additionally, Tuner supports coherent and ordered access. So if coherent_access is true, and the access_scope is TOPIC
or GROUP, then the option to read available data on all the subscriber’s readers will be available when selecting the
subscriber. See Access Data On Readers.

When the OK button is clicked, the input is validated. If the input is correct, the subscriber is created. The newly-
created subscriber will appear in the entity tree (when entity relations are enabled; see Enable and Disable Displaying
Relationships).

If the input is not correct, an error message will appear in the status bar of the dialog box.

The Create subscriber action can be cancelled by clicking the Cancel button. In this case, no subscriber will be created.

ﬂ If the subscriber was created with coherent_access and GROUP access_scope, then it will be created in the dis-
abled state, regardless of the value of the entity factory policy of the parent participant. For group coherent subscribers,
data readers can only be created while it is disabled. When the subscriber is explicitly enabled, then the contained read-
ers can begin their access to the data. After the subscriber is enabled, no further data readers can be created under it.

3.5.4 Creating a Reader

A reader can only be created if one or more subscribers have already been created.

A reader can be created by choosing Edit > Create Reader in the menu bar (see Main Window Edit Menu) or by
right-clicking on a created subscriber entity in the tree then choosing the Create Reader item.

Both of these actions will result in the display of the dialog box shown below.

Create Reader Dialog

4] Create Reader [= =)

Attributes | ReaderQoS |

Name [reader

Subscrer e —

oo [Csnperemest 7]

Query]

wait_for_historical_data O

Please provide input

The Name field determines the name of the reader (as displayed in the entity tree).

The Subscriber field determines to which subscriber the reader will be attached (determines the partition(s) the reader
will consume data from).

The Topic field determines which topic the reader will be able to consume.
The Query field can be used to specify a query for the reader so only data that matches the query will be consumed.

The WaitForHistoricalData field determines whether the Reader will wait for historical data to arrive during creation
(maximum of 30 seconds). In this case the Reader will still receive historical data.

3.5. Data Injection and Consumption 22

Tuner Guide, Release 6.x

By default the QoS settings of the Reader are copied from the Topic it reads. However, it is also possible to override
these settings by specifying its own QoS settings/profile (see QoS Profiles) in the ReaderQoS tab.

When the OK button is clicked, the input is validated. If the input is correct, the reader is created. The newly-created
reader will appear in the entity tree (when entity relations are enabled; see Enable and Disable Displaying Relation-
ships).

If the input is not correct, an error message will appear in the status bar of the dialog window.

The Create reader action can be cancelled by clicking the Cancel button. In this case, no reader will be created.

3.5.5 Creating a ReaderWriter
The creation of a publisher, writer, subscriber and reader can be simplified by directly creating a reader-writer. This
action creates a publisher, writer, subscriber and reader in one action.

There are two possible ways of creating a reader-writer. The reader-writer can be created by using a partition expression
or by using a single partition. In both cases a window will appear where the reader-writer attributes and Qos settings
of the publisher, writer, subscriber and reader can be changed.

3.5.5.1 Partition Expression
The creation of a reader-writer by using a partition expression allows a reader-writer to inject and consume in multiple
partitions.

To create such a reader-writer, choose Edit > Create Reader-Writer > Partition expression in the menu bar of the main
window (see Main Window Edit Menu) or right-click on the Vortex OpenSplice Tuner participant in the entity tree then
choose the Create Reader-Writer > Partition expression item.

Both of these actions will result in the display of the dialog box shown below.

Create Reader-Writer (Partition expression) dialog

&) Create reader-writer (partition expression) =)
[“Attributes | WiriterGoS | ReaderQos | PublisherQoS | SubscriberQos |

Partition i [partition |

T a—r

wait_for_historical_data O

PPlease provide input.

The value provided in the Partition expression field determines the publisher and subscriber partition(s). To attach
them to multiple partitions, the comma (,) can be used as separation and the asterisk (*) can be used as wild card.
Partitions that do not exist are created in OpenSplice, except for parts of the expression that contain a wild card.

The Topic field determines the topic the reader-writer will read and write.

The WaitForHistoricalData field determines whether the Reader will wait for historical data to arrive during creation
(maximum of 30 seconds). In this case the Reader will still receive historical data.

3.5. Data Injection and Consumption 23

Tuner Guide, Release 6.x

By default the QoS settings of the Reader/Writer are copied from the Topic it reads/writes. However, it is also possible
to override these settings by specifying its own QoS settings/profile (see QoS Profiles) in the WriterQoS and ReaderQoS
tabs.

When the OK button is clicked, the input is validated. If the input is correct, the reader-writer is created. The newly-
created publisher, writer, subscriber and reader will appear in the entity tree (when entity relations are enabled; see
Enable and Disable Displaying Relationships).

The reader-writer window is also presented. If the input is not correct, an error message will appear in the status bar
of the dialog window.

The Create action can be cancelled by clicking the Cancel button. In this case, no publisher, subscriber, reader and
writer will be created.

See also Consuming Data Using a Reader-Writer.

The dialog window for creating a reader-writer using a partition expression can also be summoned by right-clicking
a topic entity in the entity tree and choosing Create Reader-Writer > Partition expression). There is one difference
between the two actions mentioned above: the Topic field will only contain the selected topic in the entity tree instead
of all topics in the domain.

3.5.5.2 Existing Partition
The creation of a reader-writer by using a single partition allows a reader-writer to inject and consume in one already
existing partition.

To create such a reader-writer, choose Edit > Create Reader-Writer > Existing Partition in the menu bar of the main
window (Main Window Edit Menu) or right-click on the Vortex OpenSplice Tuner participant in the entity tree then
choose the Create Reader-Writer > Existing Partition item.

Both of these actions will result in the display of the dialog box shown below.

Create Reader-Writer (existing partition) dialog

£ Create reader-writer (existing partition) [= |
Attributes | WriterQoS | ReaderQoS | PublisherQoS | iberQos |

Partition expression \panmnn—‘ﬂ

Topc e —

vaait_for_historical_data []

[Please provide input.

The value provided in the Partition field determines the publisher and subscriber partition.
The Topic field determines the topic the reader-writer will read and write.

The WaitForHistoricalData field determines whether the Reader will wait for historical data to arrive during creation
(maximum of 30 seconds). In this case the Reader will still receive historical data.

3.5. Data Injection and Consumption 24

Tuner Guide, Release 6.x

By default the QoS settings of the Reader/Writer are copied from the Topic it reads/writes. However, it is also possible
to override these settings by specifying its own QoS settings/profile (see QoS Profiles) in the WriterQoS and ReaderQoS
tabs.

When the OK button is clicked, the input is validated. If the input is correct, the reader-writer is created. The newly-
created publisher, writer, subscriber and reader will appear in the entity tree (when entity relations are enabled; see
Enable and Disable Displaying Relationships). The reader-writer window is presented to the user. If the input is not
correct, an error message will appear in the status bar of the dialog window.

The Create action can be cancelled by clicking the Cancel button. In this case, no publisher, subscriber, reader and
writer will be created.

The dialog for creating a reader-writer for a single partition can also be summoned in two other ways.

The first one is right-clicking a topic entity in the entity tree and choosing Create Reader-Writer > Existing Partition.
(Note that the Topic field will only contain the selected topic in the entity tree instead of all topics in the domain.)

The second one is right-clicking a partition entity in the entity tree and choosing Create Reader-Writer > Existing
Fartition. (Note that the Partition field in the dialog window will only contain the selected partition in the entity tree
instead of all partitions in the domain.)

3.5.6 Creating a Snapshot of a Reader Database

OpenSplice Tuner also provides facilities to browse through data in an existing application reader database without
influencing it. This can be achieved by making a ‘snapshot’ of that database. Create a snapshot by right-clicking on
the reader that needs to be examined then choosing Make database snapshot.

Create Reader Snapshot
@ Vortex OpenSplice Tuner (httpy//10.2.... | = | E &J

File Edit View
Vortex OpenSplice Tuner (http://10.2.0.93:50000) |v

o= 3 Participant: Built-in participant
o=] Participant: Vortex OpenSplice Tuner
D Service: cmsoap
o= [Senvice: ddsi2
9 3 Senice: durability
o= 9 Publisher; durabilityPublisher
9 3 Subscriber: durabilityBuiltinSubscriber
o= [DataReader; DCPSHeartbeat_Reader
= [£1 D9 Display Entity culy pader

[P Hide Entity relations
o~ 3 Subsq

[Topic:
D Topic: Read data

D Topic: Make database snapshot
| .

Refresh Entity relations

The Make database snapshot action makes OpenSplice Tuner create a snapshot of the contents of that specific database
and open a reader snapshot window that allows browsing through the contents of the database.

3.5. Data Injection and Consumption 25

Tuner Guide, Release 6.x

3.5.7 Creating a Snapshot of Writer History Cache

OpenSplice Tuner also provides facilities to browse through data in the history cache of an existing application writer
without influencing it. This can be achieved by making a ‘snapshot’ of the history of the writer. Create a snapshot by
right-clicking on the writer that needs to be examined then choosing Make history snapshot.

Create Writer Snapshot

F |
:@(Vortex OpenSplice Tuner (http://10.2.... [= | E &J

File Edit View
Vortex OpenSplice Tuner (http://10.2.0.93:50000) |v

o= 3 Participant: Built-in participant —
o= [Participant; Vortex OpenSplice Tuner
D Service: cmsoap
o= [Senvice: ddsi2
9 3 Senice: durability
¢ [Publisher: durabilityPublisher
D Partition: durabilityPartition
o= [Writer: capabilityWriter
o~ [write| Display Entity Cirl¥
& [EJ Write! yige Entity relations
o=] Write
o= [Write
o=] Write Write data
o=] Write| Make history snapshot
o= [Writer: sampleReaquestwriter

Refresh Entity relations

The Make history snapshot action makes OpenSplice Tuner create a snapshot of the history of that specific writer and
open a writer snapshot window.

L]
Whether or not there is a history available for a specific writer depends on the Quality of Service settings of that
writer.

3.5.8 Delete Entity

Self-created entities can also be deleted. This can be achieved by right-clicking the entity to delete in the entity tree
followed by selecting the Delete Entity item in the popup menu that appears, or by choosing Edit > Delete Entity in the
menu bar.

When the entity is deleted, it is also removed from the entity tree. If the entity could not be deleted, the reason is
displayed in the status bar of the main window.

3.5.9 Injecting Data

If the correct entities are available, data can be injected into OpenSplice. The methods to do this are explained in the
following subsections.

3.5. Data Injection and Consumption 26

Tuner Guide, Release 6.x

3.5.9.1 Injecting Data Using a Writer

Data can be injected using an existing application writer or a self-created writer. To create or modify and inject data,
OpenSplice Tuner offers a writer window. Such a window can be opened by right-clicking a writer entity in the entity
tree followed by choosing the Write data item.

The Writer Window

] Circle@partition | Writer =)
File Edit View

Field type Field name | Field value
c_string color |test
c_long X 0
c_long ¥ o
c_long shapesize]
1] | r
| Register H Write H Dispose H WriteDispose H Unregister |
\Ready ﬂ

The window consists of:

Title Bar - Displays the title. Its format is: <fopic_name> @ <partition(s)> > Writer.

Menu Bar - Contains the File, Edit and View menus.

User Data View - View that consists of a table that displays the data the writer can write.
Button Panel - Contains buttons to register, unregister, write and dispose data in OpenSplice.
Status Bar - Displays the current action as well as the status of the writer.

The user data view displays all fields in the data, which depend on the data type of the topic that the writer is able to
write. It consists of three columns.

The first column displays the type of a field in the data.

The second column displays the name of a field in the data. Nested fields in the data are separated by a
dot. The fields that are part of the key of the topic are colored green.

The third column displays the current value of the field. When the window is opened, they have the default
value (the default value depends on the type of the field).

A The field type names are not the same as how they have been specified in IDL. They are displayed as internal
OpenSplice types. This means (in most cases) that a prefix c_ is added and unsigned is transformed in u. For
example: the type long in IDL becomes c_long and unsigned long becomes c_ulong.

To edit the value of a field, click the Field value of that field. The field is colored orange while editing (see illustration).
The writer window starts an editor when a specific field value is clicked. The editor type depends on the Field type.
For primitive types like 1ong and float as well as for strings, a simple text field is created. To confirm the input in
a text field, simply press the Enfer key. For enumeration and boolean types, a pull-down menu with the possible
options appears. The input in a pull-down menu does not have to be confirmed.

Writer Window Edit Field Value

3.5. Data Injection and Consumption 27

Tuner Guide, Release 6.x

|£:| OsplArrayTopic@partition | Writer | = | B s
File Edit View
Field type Field name Field value

c_longlong

c_double

c_double

C_ARRAY<c_double 4=

C_ARRAY=c_double, 10>

C_SEQUEMNCE=Coord=

vector

c_long

sampleUnion.switch

c_long

sampleUnion.x

C_SEQUENCE=c_float=

sampleUnion xs

C_SEQUENCE=c_char=

sampleUnion.sometext

MEEEHEEEEE
E

Tstate

sampleUnion state.state

3

c_doubls

sampleUnion.state.x

c_doubls
C_SEQUEMCE=c_long=

sampleUnion state.y
sampleUnion.state.vector

I

During the editing, the value is constantly validated. When the current value of the Field value is not valid, the field is
colored red (see illustration) and the input cannot be confirmed. To cancel the editing, press the Esc key. The value of
the field is reset to the value it had before the editing began.

Writer Window Input Error

==

|4 OsplamayTopic@partition | Writer

File Edit View |
Field type Field name Field value

c_longlong id

c_double X

c_double y
C_ARRAY=c_double 4= a

GGG

When all fields are set to the desired value, the data can be injected into OpenSplice.

The Register button in the button panel (in The Writer Window) or Edit > Register instance in the menu bar will
inform OpenSplice that the particular instance will be modified, meaning that OpenSplice will handle the instance
more efficiently.

To undo this the Unregister button can be clicked or Edit > Unregister instance in the menu bar. This will inform
OpenSplice that the particular instance will not be modified any more.

Data can be injected by clicking the Write button in the button panel or by choosing Edit > Write in the menu bar.
When the current input is not valid as shown in Writer Window Input Error, the data cannot be written. A write action
will result in the error message in the status bar of the writer window: ‘Data could not be written, because input is not
valid’.

When a field value has not been confirmed, but the current input is valid, the write action will result in a confirmation
of the input followed by a write action.

If data was successfully written, the message ‘Data written’ appears in the status bar.

Besides writing data, it can also be disposed. Data in OpenSplice can be disposed by clicking the Dispose button in
the button panel or by choosing Edit > Dispose in the menu bar. The mechanism of the dispose is the same as the one
for the write action.

The write and dispose action can also be combined. This can be done by clicking the WriteDispose button or Edit >
WriteDispose in the menu bar. This will first write the data and then dispose it.

A Data that is injected will also arrive at data readers of other running OpenSplice applications that are subscribed
to this data. This also applies to disposing of data.

The Entity information of the Writer associated with the Writer window can be resolved by choosing File > Show
Writer info.

3.5. Data Injection and Consumption 28

Tuner Guide, Release 6.x

3.5.9.2 Injecting Data Using a Reader-Writer

The creation of a reader-writer results in the popup of a reader-writer window. The reader-writer window is a combi-
nation of a reader window and a writer window.

The Reader-Writer Window

|2 Circle@partition | ReaderWriter (take mode) = | B i
File Edit View
altribute value

sample_state MN/A -~
view_state M/A |=|
instance_state MIA

valid_data MIA]
i 1_count A =
e

List Single [’wmer |

Field type Field name Field value

c_string color test

c_long X 0

c_long y 0

c_long shapesize 0

L= < J[=][>]

| Register H Write H Dispose H WriteDispose H Unregister |

‘Ready ﬂ

The reader-writer window provides facilities for both injecting and consuming data. It consists of:

Title Bar - Displays the title of the window. The format is <topic_name> @ <partition(s)> | Reader-Writer (<mode>)
Menu Bar - The menu bar for the window.

Sample information Table - Displays sample information of a specific sample.

Data Table - Consists of three tabs. The reader and writer are combined using these three tabs. The List and Single
tabs belong to the reader and the Writer tab belongs to the writer.

Button Panel - Contains a combination of reader and writer window buttons.
Status Bar - Displays information about the current action and the state of the reader-writer.

The Writer tab of the user data view is selected in The Reader-Writer Window. It looks the same as the user data view
of the writer window in The Writer Window, but for collection types a right-click menu is available.

When you right-click on a field value cell which contains collection type data and then choose the Add Details, a new
window will open (see Detailed Writer tab), which looks the same as the writer window (which is described in Injecting
Data Using a Writer) except that the Write and Dispose buttons are replaced by a single Save button.

The illustration below shows a sample with five elements: id and four sequence fields named text, iVector, fVector
and pVector.

Add Details menu item for collection types

List | single | Writer |

Field type [Field name Field value
c_longlong \\d
C_SEQUENCE=c_char= he_xt NULL
C_SEQUEMNCE=c_long= iVector MNULL
C_SEQUEMNCE=c_double> |Wector NULL
C_SEQUENCE=0spllog::Sta... pVector

[——
Add Details

It is only possible in the Writer tab to edit primitive elements. For collection types use the right-click menu item Add
Details. In the illustration, only the field name id can be edited in this window; for all other types use the Add Details
item, which opens a new window with the content of the selected field type.

The next illustration shows the detailed information from the pVector element.

Detailed Writer tab

3.5. Data Injection and Consumption 29

Tuner Guide, Release 6.x

|£| pVector SRIEN X
File Edit View

List | Single [Writer |

Field type Field name Field value

Tstate pYector.siate init

c_double pVector.x 0

c_double pvector.y 0

C_SEQUENCE=c_long> pYector.vector NULL
‘Ready ﬂ

This element again has a collection type vector and thus the Add Details item is available to edit the content of this
element. The rest of the types can be edited in the current window. When the Save button is clicked all filled-in data in
the current window will be saved and in the main reader-writer window the field value of the edited field type will be
updated.

For data types containing a two dimensional sequence, the process is similar. The next illustration shows the field
seq2D, which is a sequence of a sequence of longs.

Detailed Writer tab
) d 5
[£] seqzD = B & |5 seqzD1] = | B
Eile Edit View Eile Edit View
List Single rerler ‘ List Single rWnler |
Field type | Field name ‘ Field value Field type | Field name | Field value

C_SEQUENCE=longSeq= |seq2D ‘[[1.2.3‘4].[5.5‘7.8]] C_SEQUENCE=c_long= |seq2D[1] La
Ready E |Data saved E

When editing two dimensional sequences such as this, Add details is first selected in the main reader-writer window
and the detail view of the first order sequence is displayed. Add details must then be selected in this window’s writer
tab to access the detail window of the second order sequence, of the first order’s first index.

This second order sequence, seg2D[0] can then be filled in by typing in a value in the editing cell on the writer tab,
and clicking Save the value to an index of the second order sequence. Index selection is done by clicking on a row in
the List tab. If no row is selected, Save will add a new index to the sequence.

When done editing the second order sequence, the window can be closed, and the next index of the first order collection
can be edited by selecting Add details again. This will bring up the details window for seq2D[1].

Continuing in this fashion, the two dimensional sequence can be filled in. The current table row in the List tab can be
deselected by clicking outside of the table or by pressing the Esc key.

To delete the contents of a collection, in the main reader-writer window, right click on the collection in the writer tab,
and select Clear details.

A

3.5. Data Injection and Consumption 30

Tuner Guide, Release 6.x

NOTE: You must click the Write button in the parent reader-writer window for any changes made in the
Writer tab to be written to the system.

The facilities of the List and Single tabs of the user data view and the Sample information view is the same as for the
reader window.

The buttons in the button panel are a combination of the buttons in a reader window and a writer window.
The <<, <, > and >> buttons are described in Consuming Data Using a Reader-Writer.

Information about the Register, Write, WriteDispose and Unregister buttons can be found in Injecting Data Using a
Writer.

In contrast to a reader window and writer window, the closing of a reader-writer window (this can be done by clicking
the ‘close’ (X) icon in the top-right corner of the window or by choosing File > Close in the menu bar), will result in
the automatic deletion of all entities that concern the reader-writer (a publisher, writer, subscriber and a reader).

A Data that is injected will also arrive at data readers of other running OpenSplice applications that are subscribed
to this data.

This also applies to disposing of data.

The Entity information of the Reader and Writer associated with the ReaderWriter window can be resolved by choosing
respectively File > Show Reader info or File > Show Writer info.

3.5.9.3 Detailed Reader-Writer window

The detailed reader-writer window is combination of a reader window and a writer window.

Detailed Reader-Writer window
[&] pVector =)

File Edit View

Single rWriter |
index pVector state pVectorx pVectory pVectorvector
0 init 3 4 5005,555
1 hit 3333 4444 3005,1234
2 boost 334573432 763 12394567

\Rea dy ﬂ
L

The detailed reader-writer window provides facilities for both injecting and consuming data. It consists of:

Title Bar - Displays the title of the window, which is the name of the column from which the right-click was done that
created the window.

Menu Bar - The menu bar for the window.

Data Table - Consists of three tabs. The reader and writer are combined using these three tabs. The List and Single
tabs belong to the reader and the Writer tab belongs to the writer.

Button Panel - Contains a Save button.

Status Bar - Displays information about the current action and the state of the reader-writer.

3.5. Data Injection and Consumption 31

Tuner Guide, Release 6.x

The List tab of the user data view is selected in the illustration. It looks almost the same as the user data view from the
reader-writer window except that the List tab user data always starts with an index column displaying the index of that
element inside the collection. In this case the pVector element consists of three sub-elements each having state, x,
y, and vector fields. The vector field is again a collection type and can thus be viewed in detail.

The facilities of the List and Single tabs of the user data view are the same as for the reader-writer window.

3.5.10 Consuming Data

If the correct entities are available, data can be consumed from OpenSplice. The methods to do this are explained in
the subsections below.

3.5.10.1 Consuming Data Using a Reader
Data can be consumed using an existing application reader or a self-created reader. To consume data, OpenSplice Tuner
offers a reader window.

Such a window can be opened by right-clicking an entity in the entity tree in the main window followed by selecting
the Read data item. If a reader has been created with a query specified, select the reader query entity in the Participant
View.

A reader window is shown below.

o
The Reader Window
|£| Circle@partition | Reader (take mode) = | B [
File Edit View
attribute value

sample_state MNOT_READ -
view_state NEW
instance_state ALIVE
wvalid_data TRUE
disposed_generation_count 0 8
no_writers_generation_count 0 T
insert_timestamp 14538353565 359281600ns . (Tue Jan 26 14:09:1
source_timestamp 14538353565, 359281600ns. (Tue Jan 26 14:09:1..
write_insert_latency 0s. 0ns.
writerGID localld 1992]
writerGID.systemld 560444198
instanceGID localld 2931 —

ITat EENAAA40 o

List | single |
color X ‘ ¥ | shapesize |
BLUE |320 [154 las
«< |[_=< [=][>
Ready o1
.

The window consists of:

Title Bar - Displays the title. Format is: <topic_name> @ <partition(s)> | Reader (<mode>).

Menu Bar - Consists of File, Edit and View menus.

Sample information View - Displays the sample information of one specific sample.

User Data View - Displays the user data of the samples that have been consumed by OpenSplice Tuner.
Button Panel - Contains buttons to consume data from OpenSplice.

Status Bar - Displays the current action as well as the status of the reader.

Multiple views on consumed data are available in the window. Without interaction, no data is consumed by OpenSplice
Tuner. The buttons on the button panel enable browsing through the data in the reader database.

3.5. Data Injection and Consumption 32

Tuner Guide, Release 6.x

The > button (or Edit > Next in the menu bar) selects the next sample that has been consumed in the List and Single
tabs of the User data view as well as the Sample information view. If the last consumed sample is selected, a new
sample is consumed from the reader database. If no more samples are available in the reader database, the notification
‘No more data available’ will appear in the status bar.

The < button (or Edit > Previous) selects the previous sample in the view. If the first one is selected, the notification
‘No more previous data’ is displayed in the status bar. This action does not trigger OpenSplice Tuner to consume data.

The >> button (or Edit > Next 50) selects the 50th sample counted from the currently-selected one. The samples
are consumed from the reader database if fewer samples are available in the user data view. If no more samples are
available, the notification ‘No more data available’ is displayed in the status bar.

The << button (or Edit > Previous 50) selects 50 samples back, counted from the currently-selected one. If the first
one is currently selected, the notification ‘No more previous data available’ is displayed in the status bar. If there are
some previous samples, but fewer than 50, the first sample is selected. This action does not trigger OpenSplice Tuner
to consume data.

A Data that is consumed by OpenSplice Tuner from an application data reader cannot be consumed any more by the
application that created that specific data reader.

The Entity information of the Reader associated with the Reader window can be resolved by choosing File > Show
Reader info.

3.5.10.1.1 Sample Information View

The sample information view displays information about the currently selected sample in the user data view. When an
application injects data, OpenSplice adds information to it. This information is called sample information in OpenSplice
Tuner. It is displayed in the sample information view. This information consists of:

sample_state - Indicates whether or not the sample has already been read.

view_state - Indicates whether the DataReader has already seen samples for the most current generation of the related
instance.

instance_state - Indicates whether the instance is currently in existence, or if it has been disposed, the reason why is
was disposed.

valid_data - Indicates whether the read data is valid or not.

disposed_generation_count - Indicates the number of times the instances has become alive after it was disposed
explicitly by a Writer, at the time the sample was received.

no_writers_generation_count - Indicates the number of times the instance has become alive after it was disposed
because there were no writers, at the time the sample was received.

insert_timestamp - The time the sample was inserted in the reader database.
source_timestamp - The time the message was written.
write_insert_latency - The time between write and insert.

writerGID - Identification of the writer that wrote the message.
instanceGID - Identification of the instance of the sample.
sampleSequenceNumber - Sequence number of the sample.

qos - The Quality of Service of the message (not implemented yet).

The selection in the User data view determines the information in the Sample information view. OpenSplice Tuner
automatically displays the sample information that is associated with the user data that is selected in User data view.

3.5. Data Injection and Consumption 33

Tuner Guide, Release 6.x

3.5.10.1.2 User Data View

The user data view contains two tables that both offer a different view: List table and Single table.

The Single table is capable of displaying one specific instance of user data. This view displays all fields in the data,
which depend on the data type of the topic that the reader is able to consume. It consists of three columns. The first
column displays the type of a field in the data. The second column displays the name of a field in the data. Nested fields
in the data are separated by a dot. The fields that are part of the key of the topic are colored green. The third column
displays the current value of the field. When the window is opened, they have the value N/A.

The List table is capable of displaying multiple samples in a table.

The list view is selected in The Reader Window. Each row represents one instance of user data from a sample that is
consumed from OpenSplice. Each column represents a field in the data. Key fields are colored green.

3.5.10.1.3 Show details of data that contains a collection type

When you right-click on a cell which contains collection type data and then choose the Show Details item (see the
illustration below), a new window will open, which is similar to the reader-writer window (described in Detailed
Reader-Writer window); the new window shows the details of the chosen collection type.

Show Details item

-

List Single | Writer
ia text [pector wector | tvector
5 [nuLE |imit, . . 5]

Sort ascending

Sort descending

Remove column

Apply filter "[init,3,4,5005,555,h..." on pVector
Show Details

3.5.10.1.4 Sorting Data

Data in the List table of the User data view can be sorted by column. This can be achieved by right-clicking any cell in
the column that needs to be sorted followed by selecting the Sort ascending item to sort the column in ascending order
or the Sort descending item to sort the column in descending order.

List View actions

List | Single | Writer |

long_1 long_2 long_3 u_long_1 u_long_long_1
0 0 0 0 0

1 23 45 123 3435
11 2323 — — 343235
111 E] Sort ascending 232 343235
1112 El Sort descending 234232 3432335

| Remove column | »

C= [=<l Apphy filter 2323' on long_2 e |[Dispose__|

3.5.10.1.5 Filters

It is possible to apply one or more filters on data in the List table of the user data view. Data in the table that does not
match one or more of these filters is hidden.

To apply a filter, right-click on a specific cell in the table followed by selecting the Apply filter ‘<value>’ on
<field_name> item.

The illustration List View actions above shows the application of the filter "23" on the field "long_2". This means
that data that does not have the value 23 for the field 1long_2 will be hidden. The illustration below shows the data in
the table from after the filter shown above is applied. Multiple filters can be applied altogether.

3.5. Data Injection and Consumption 34

Tuner Guide, Release 6.x

Remove a Filter

List | Single | writer |

long_1 lang_2 long_3 u_lang_1 u_lang_long_1
111 45232 123232 343235
1112 g A 123234232 3432335

Sort ascending
Sort descending
Remove column

o T Remove filter ‘3* on long_2 [»

[=< [<« [» [» |[write | pispose |

Once a filter has been applied, it can also be removed again. This will result in the display of the data that was hidden
because it did not match that filter. Removing a filter can be achieved by right-clicking on a cell in the column where
the filter was applied and selecting the Remove filter ‘<value>’ on <field_name> item or by selecting Edit > Remove
filter > <field_name>:<value> in the menu bar.

3.5.10.1.6 Reordering Columns

A column in the List table of the User data view can be moved to another location by left-clicking the column header
and dragging it to the new location in the view.

3.5.10.1.7 Removing Columns

Sometimes not all fields in the data are interesting. These fields can be removed from the List table in the User data
view. This can be done by right-clicking the relevant column and choosing Remove column from the popup menu. The
column will be removed from the List table, and it cannot be displayed again in that specific window.

3.5.10.1.8 Consumption Mode

The reader window supports two modes for data consumption. The first mode is the take mode. This is the default
mode. In this mode, each consumed sample is removed from the database after it has been read.

The second mode is the read mode. In this mode, a consumed sample is only marked as read in the database after it
is read, but not removed. The consumption mode can be changed by choosing Edit > Take mode in the menu bar to
select the take mode or by choosing Edit > Read mode to select the read mode.

3.5.10.1.9 Monitoring

The reader window supports monitoring the reader database. This means it consumes samples from the database and
displays them right after they become available. Monitoring is possible in both read mode and take mode. To enable
monitoring, choose Edit > Start monitoring in the menu bar. This will disable all actions for the reader window until
monitoring is stopped. Monitoring can be stopped by choosing Edit > Stop monitoring in the menu bar.

ﬂ Monitoring increases the intrusiveness of OpenSplice Tuner on OpenSplice.

3.5. Data Injection and Consumption 35

Tuner Guide, Release 6.x

3.5.10.1.10 Clear Data

The data in the List table of the User data view can be removed from the view. There are two ways to do it.

The first way is to remove only the selected sample. This can be done by choosing Edit > Clear selection in the menu
bar.

The second way is to remove all data in the table. This can be done by choosing Edit > Clear list in the menu bar.

3.5.10.2 Inspecting Data in a Reader Database Snapshot

The creation of a snapshot of a reader database results in the popup of a reader snapshot window. Such a reader snapshot
window is shown below.

Reader Snapshot Window

|4 Circle@partition | ReaderSnapshot(2fagf) (take mode) = | B S|
File Edit View

atfribute value
sample_state NOT_READ
view_state NOT_NEW
instance_state ALIVE
valid_data TRUE
disposed_generation_count 0
no_writers_generation_count 0
insert_timestamp 14538366405, 198713000ns. (Tue Jan 26 14:30:40 ..
source_timestamp 1453836640s. 198713000ns. (Tue Jan 26 14:30:40 ...
write_insert_latency 0s. Ons
writerGID. localld 1992
writerGID. systemld 560444198
instanceGID.localld 2931
instanceGID.systemld 560444198
sampleSequenceNumber 0
qos.reliability. kind BESTEFFORT
qos.reliability. max_blocking_time |N/A
[“List | single |
color X y shapesize
BLUE 320 154 45
BLUE 222 166 45
BLUE 182 197 45
BLUE 119 214 45

«< L= [= |[>

Ready E

This window consists of:

Title Bar - Displays information about the snapshot. The format of the title is: <topic_name> @ <partition(s)> |
ReaderSnapshot (<heap address>)(<mode>).

Menu Bar - Contains three menus that provide several facilities for accessing and modifying the snapshot as well as
the view on the data.

Sample information View - Displays the sample information of the sample that is associated with the currently se-
lected instance of user data in the User data view.

User Data View - Provides different views for displaying the instances of user data in the snapshot.

Button Panel - Offers facilities to browse through the data in the snapshot.

Status Bar - Provides information about the status of the snapshot or actions that are currently being executed.

The facilities for browsing through the data in the snapshot and for modifying the view are equal to the facilities that

are available for a writer snapshot window, reader window and a reader-writer window. See Consuming Data.

ﬂ When a reader snapshot window is closed, the reader snapshot is deleted.

3.5. Data Injection and Consumption 36

Tuner Guide, Release 6.x

3.5.10.3 Inspecting Data in a Writer History Snapshot

The creation of a snapshot of writer history cache results in the popup of a writer snapshot window. Such a window
looks almost the same as a reader window and has the same capabilities. A writer snapshot window is shown below.

Writer Snapshot Window
|4 Circle@partition | WriterSnapshot(2f2310) (take mode) = |) -
File Edit View
atfribute value
sample_state N/A
view_state A
instance_state MIA
walid_data MIA
disposed_generation_count MIA
no_writers_generation_count NIA
insert_timestamp NIA
source_timestamp NIA
write_insert_latency NIA
writerGID. localld MIA
writerGID. systemld MIA
instanceGID localld I
instanceGID.systemld /A
sampleSequenceNumber NIA
qos.reliability kind NIA
gos reliability max_blocking_time |N/A
-
List Single ‘
color X ¥ shapesize
< |l < [> | »
Ready |
The window consists of:
Title Bar - Displays the title. Format is: <topic_name> @ <partition(s)>

shot(<heap_address>)(<mode>).
Menu Bar - Consists of File, Edit and View menus.
Sample information View - Displays the sample information of one specific sample.
User Data View - Displays the user data that is consumed by OpenSplice Tuner.
Button Panel - Contains buttons to consume data from OpenSplice.

Status Bar - Displays the current action as well as the status of the snapshot.

ﬂ When a writer snapshot window is closed, the writer snapshot is deleted.

3.5.10.4 Consuming Data Using a Reader-Writer

WriterSnap-

The creation of a reader-writer results in the popup of a reader-writer window (7he Reader-Writer Window). The
reader-writer window is combination of a reader window and a writer window. It provides both the reader and writer

window facilities.

3.5. Data Injection and Consumption

37

Tuner Guide, Release 6.x

3.5.10.5 Injecting and Consuming Data With Coherent and Ordered Access

Vortex OpenSplice supports setting of the Presentation policy of publishers and subscribers. As a result, Tuner can
set these policies on its own created publishers and subscribers and be able to inject/consume coherent sets of data
into/from the system.

3.5.10.5.1 Publishing Coherent Sets

Tuner is able to create and publish coherent sets of data for either existing publishers in the system or from its own
created publishers. To create a coherent publisher in Tuner, see Creating a Publisher.

In the main window’s entity tree, in either participant or partition view mode, right click a publisher that has its ac-
cess_scope set to either TOPIC or GROUP, and its coherent_access set to true. If these conditions are true, then the
right click context menu will show a new item called Publish coherent sets. Selecting this menu option will bring up
the coherent publish window.

Coherent Publisher Window

File Edit View

Instance Write State [Source writer | Writer List
userlD : 0 WRITE msg2writer ||/msg2writer
useriD : 1 WRITE msg2writer msglWriter
userlD: 0 WRITE msglWriter
useriD: 1 WRITE msglWriter
End coherent changes
[Ready | i}

This view contains two parts: the list of writers currently under this Publisher, and the user data table containing data
about the outgoing samples in a coherent set.

The actions available to the user in this view are:
* Begin coherent changes
* End coherent changes
* Refresh writer list

Begin coherent changes will set the publisher in coherent mode. In this state, samples written by this publisher’s
writers will not be made visible to remote readers (under a subscriber with matching Presentation policy) until the End
coherent changes action is made. Otherwise, samples written while the publisher is not in coherent mode are published
normally.

Samples can be constructed and written from this view by either double clicking or right clicking on a writer in the
writers list and selecting Write data. This brings up a writer window identical to the one in Injecting Data Using a
Writer, only this one will update the Coherent publish window with written data.

When a sample is constructed in the writer window and then written, disposed, or any other writer action made, and if
the publisher is in coherent mode, then the sample will appear in the Coherent publish window’s data table.

The data table displays the written sample’s instance key, the outgoing instance state, and the originating writer’s name.
Samples in the data table can be double clicked to bring up a read only view of the writer window to view the sample’s

3.5. Data Injection and Consumption 38

Tuner Guide, Release 6.x

fields.

A Once a sample has been written from the writer window, regardless if the publisher is in coherent mode or not, it
is live in the system and cannot be edited.

Once editing a set of coherent data is complete, clicking End coherent changes button will notify the publisher that the
set is complete, and remote coherent subscribers will allow access to the published data.

The Refresh writer list action (accessible from the Edit menu or F5 keystroke) refreshes the current list writers that the
publisher owns, if any writers were created or deleted since the creation of the window.

3.5.10.5.2 Access Data On Readers

Tuner is able to access data from a subscriber scope, specifically for viewing coherent and/or ordered sets of data for
either existing subscribers in the system or from its own created subscribers. To create a coherent subscriber in Tuner,
see Creating a Subscriber.

In the main window’s entity tree, in either participant or partition view mode, right click a subscriber that has its
access_scope set to either TOPIC or GROUP, and its coherent_access set to true. If these conditions are true, then the
right click context menu will show a new item called Access data on readers. Selecting this menu option will bring
up the subscriber access window.

Subscriber Access Window

(] subscriber@ | Subscriber

File Edit View

Instance Read State Source reader
useriD : 2 ALIVE, NEW reader2
useriD : 1 ALIVE, NEW readerl
userlD : 2 ALIVE, NOT_NEW reader2
useriD : 1 ALVE, NEW reader2
userlD : 2 ALVE, NEW readerl
userlD : 1 ALVE, NOT_NEW readerl
userD: 1 ALIVE, NOT_NEW reader2
userlD: 2 ALIVE, NOT_NEW readerl
‘ Access available data ‘ | Clear table |
| Ready L]

This view contains a single component, a table containing samples that are taken from the subscriber’s data readers in
a coherent and ordered set (if the subscriber’s Presentation policy has those attributes set).

The actions available to the user in this view are:
e Access available data
e Clear table

Access available data Will access all owned data reader entities that have data available, in order, and will display all
samples returned in the data table. The table displays the instance key and key value, the instance and view state of the
sample, and the originating reader name that received the sample. A grayed out row also appears after the end of the
table, to visually separate distinct accesses form each other.

Double clicking or right clicking on a table row and selecting the View data action will bring up a reader frame dis-
playing the full sample info and user data of the selection. This particular reader frame is only for viewing the current
selection of the subscriber’s data table, the read/take, import/export, and monitoring functions are disabled.

3.5. Data Injection and Consumption 39

Tuner Guide, Release 6.x

ﬂ Note that the Access available data action on a coherent subscriber will populate the data table with completed
coherent publications, it will also display any samples that were published incoherently. That is to say, a writer under
a coherent publisher is capable of writing data outside of a coherent change block, in which case, the data is received
by compatible data readers normally.

ﬂ Access available data action only uses fake on owned data readers.

Clear table Clears all rows from the data table.

3.6 Exporting and Importing

Next to injecting and consuming data, OpenSplice Tuner also provides facilities to export information from OpenSplice
to a file on disk, and to import information from a file on disk.

There are two kinds of information that can be exported/imported. It is possible to export/import a Topic and also
samples for that Topic.

OpenSplice Tuner considers the Topic itself as metadata and the samples for a Topic as data. OpenSplice Tuner exports
both metadata and data to disk in XML format. See the section Exporting and Importing.

3.6.1 Export Metadata

Topics in OpenSplice can be exported to a file on disk with OpenSplice Tuner. Once a Topic is exported, it can for
instance be imported in another OpenSplice domain later on. It might also be useful to re-insert the Topic after a restart
of OpenSplice.

Exported metadata consists of:
* Topic Name
* Topic Type Name
* Topic Key List
* Topic Data Type
* Topic Quality of Service

Exporting metadata can be achieved by choosing Edit > Export metadata in the menu of the main window (Main
Window Edit Menu) or by right-clicking a Topic entity in the entity tree of the main window followed by selecting
Export metadata from the popup menu that appears (see Enable and Disable Entity Relations). Both of these actions
will result in the display of the dialog window shown below.

Export Metadata dialog
4] Export metadata ==
Attributes
Topic ‘Circle ‘vl
File \Circle xml | | Browse |
Ok I | Cancel ‘
Please provide input.

The value provided in the Topic field determines the topic that needs to be exported to disk. The File field determines
the location where OpenSplice Tuner will store the information. By clicking the Browse button it is possible to select
the location to store the information using a file chooser.

3.6. Exporting and Importing 40

Tuner Guide, Release 6.x

When the OK button is clicked, the input is validated. If the input is correct, the metadata is exported. If the input is
not correct, an error message will appear in the status bar of the dialog window. The export metadata action can be
cancelled by clicking the Cancel button. In this case, no metadata will be exported.

3.6.2 Export Data

Next to topics, samples in OpenSplice can also be exported. Just as with the creation of a reader-writer, exporting data
is available in two modes.

» Exporting data from one existing partition.
» Exporting data from partitions that match a user-defined expression.
It is also possible to export data from an existing reader using the list view of a reader window and reader-writer window.

It is not necessary to export the metadata prior to exporting the data, because OpenSplice Tuner exports the metadata
of the data as well.

3.6.2.1 Existing Partition

Data from an existing partition can be exported by:
* Choosing Edit > Export data > Existing Partition from the menu bar of the main window

» Right-clicking a partition entity in the entity tree of the main window followed by choosing Export data from
the popup menu that appears.

* Right-clicking a topic entity in the entity tree of the main window followed by choosing Export data > Existing
Partition from the popup menu that appears.

All of these actions result in the popup of the dialog window shown below.

Export Data (Existing Partition) dialog

] Export data =
Attributes | ReaderQoS |

Topic |4_sampleRequest [=]
Partition [partition [+]
Query [|
File [topicxmi |[Browse |
wait_for_historical_data D

|Please provide input.

The Topic field specifies the topic whose data must be exported.
The Partition field determines from which partition the data must be exported.
The Query field can optionally be used to specify a query, so only data that matches the query will be exported.

The File field determines the location where to store the data. The Browse button can be used to select that location
from within a file chooser.

3.6. Exporting and Importing 41

Tuner Guide, Release 6.x

The export functionality uses a reader to gain access to the data that needs to be exported.

The WaitForHistoricalData field determines whether the Reader will wait for historical data to arrive during creation
(maximum of 30 seconds). In this case the Reader will still receive historical data.

By default the QoS settings of the Reader are copied from the Topic it reads. However, it is also possible to override
these settings by specifying its own QoS settings/profile (see QoS Profiles) in the ReaderQoS tab. The QoS settings of
the Reader influence the data that will be exported.

When the OK button is clicked, the input is validated. If the input is correct, all data that matches the topic, partition
(and query) is exported to the specified file.

If the file already exists, it is overwritten.
If the input is not correct, an error message will appear in the status bar of the dialog window.

The Export data action can be cancelled by clicking the Cancel button. In this case, no data will be exported.

3.6.2.2 Partition Expression

Exporting data according to a partition expression looks a lot like exporting data from an existing partition. The only
difference is that the data is exported from all partitions that match the supplied partition expression instead of only
exporting data from one partition.

To export data according to a partition expression, choose Edit > Export data > Partition expression from the menu
bar of the main window or right-click a Topic entity followed by choosing Export data > Partition expression from the
popup menu that appears. Both of these actions result in the display of a dialog window as shown below.

Export Data (Partition Expression) dialog

| &) Export data =)
Attributes | ReaderQoS |

Topic |4_sampleRequest [+]
Partition |partition |
Query ‘ |
File [topicmi |[Browse |
wait_for_historical_data [m]

\P\eas.e provide input.

The Topic, Query and File input fields match the ones in the dialog window above.
The Partition field accepts a partition expression.

The export functionality uses a reader to gain access to the data that needs to be exported. The WaitForHistoricalData
field determines whether the Reader will wait for historical data to arrive during creation (maximum of 30 seconds).
In this case the Reader will still receive historical data.

By default the QoS settings of the Reader are copied from the Topic it reads. However, it is also possible to override
these settings by specifying its own QoS settings/profile (see QoS Profiles) in the ReaderQoS tab. The QoS settings of
the Reader influence the data that will be exported.

When the OK button is clicked, the input is validated.

3.6. Exporting and Importing 42

Tuner Guide, Release 6.x

If the input is correct, all data that matches the topic, partition expression (and query) is exported to the specified file.
If the file already exists, it is overwritten. If the input is not correct, an error message appears in the status bar of the
dialog window.

The Export data action can be cancelled by clicking the Cancel button. In this case, no data will be exported.

3.6.2.3 From Existing Reader

OpenSplice Tuner also provides facilities to export data from an existing reader. This can be achieved from within a
reader window and reader-writer window. To export data from a reader window or reader-writer window, choose Edit
> Export from the menu of that window. This action results in the display of the dialog window shown below.

Export Data (From Existing Reader) dialog

| £| Export data to file | = X
File |circlexml || Browse |
ok |[cancer |

uPlease provide input. ‘

Because both Topic and Partition are already known, only the File has to be specified in the dialog window.
The Browse button allows the selection of a file in a file chooser.
When the OK button is clicked, the input is validated.

If the input is correct, all data in the list view of the window is exported to the specified file. If the file already exists,
it is overwritten. If the input is not correct, an error message appears in the status bar of the dialog window.

The Export data action can be cancelled by clicking the Cancel button. In this case, no data will be exported.

3.6.3 Import Metadata

Exported metadata can be imported again. Successful importing of metadata in a specific OpenSplice domain results
in the creation of a topic in that OpenSplice domain.

To import metadata choose Edit > Import metadata from the menu bar of the main window. This results in the display
of the dialog window shown below.

Import Metadata dialog
£ Import metadata =

File |Iup|c.xml | | Browse ‘

Ok || Cancel ‘

HPIease provide input. ‘

The File input field must specify the location of the file that contains the exported metadata. A file chooser can be used
to look up the file by clicking the Browse button and selecting the file there.

When the OK button is clicked, the input is validated.

If the input is correct, the metadata in the specified file is imported into the connected OpenSplice domain. If the
topic already exists with exactly the same characteristics (name, type name, key list, data type and quality of service),
importing is also allowed but has no use.

If the input is not correct or a topic with the same name but other characteristics already exists in the connected domain,
an error message appears in the status bar of the dialog window.

The Import metadata action can be cancelled by clicking the Cancel button. In this case, no data will be imported.

3.6. Exporting and Importing 43

Tuner Guide, Release 6.x

3.6.4 Import Data

Just like exported metadata, exported data can also be imported into a specific OpenSplice domain. When importing
data, OpenSplice Tuner also checks whether the metadata of the data that needs to be imported is already available.
If so, it checks to see if the metadata matches the metadata of the data to import. If not, it also imports the metadata.
This means it is not necessary to import the metadata prior to importing the data when the metadata is unknown in the
OpenSplice domain.

A Data that is imported will arrive at all data readers of running OpenSplice applications that are participating in
that domain and are subscribed to this data.

3.6.4.1 Original Partition(s)

Importing data in its original partition(s) means that the data will be imported into the partitions it was exported from.

Choosing Edit > Import data > Original Partition(s) from the menu bar of the main window results in the display of
the dialog illustrated below.

Import Data (original Partition) dialog

| £| Import data (original Partition) = S|
File |mpiczm| | | Browse ‘

Make selection []

HPIease provide input. ‘

The File input field must specify the location of the data on disk.
The Make selection allows importing a subset of the data in the file specified by the File input field.
The Import data action can be cancelled by clicking the Cancel button. In this case, no data will be imported.

When the OK button is clicked and the Make selection check box is unchecked, OpenSplice Tuner validates the specified
file and if so imports all data in the file into the original partition(s).

If the Make selection check box is checked when the OK button is clicked, the Import window shown below is displayed.

The Import Window
| £| Circlexml {take mode) = | B[
File Edit View
attribute value
sample_state MIA
view_state MIA
instance_state NIA
valid_data MNIA
disposed_generation_count MIA
no_writers_generation_count MIA
insert_timestamp MIA
source_timestamp MIA
write_insert_|latency MNIA
writerGID localld MIA
writerGID.systemid NIA
linstanceGID.localld MiA
instanceGID.systemld MIA
sampleSequenceNumber NIA
qos_reliability kind NIA
qos_reliability max_blocking_time |N/A
==
| List | single |
color X ¥ shapesize
BLUE 320 154 45
BLUE 222 166 45
BLUE 182 197 45
BLUE 119 214 45
L=l < [= J[= |
| Register H Write H Dispose H WriteDispose H Unregister ‘
\Readv E

The import window consists of:

3.6. Exporting and Importing 44

Tuner Guide, Release 6.x

Title Bar - Displays the title. Format is: <file_name>(<mode>).

Menu Bar - Consists of File, Edit and View menus.

Sample information View - Displays the sample information of one specific sample.

User Data View - Displays the user data that is read by OpenSplice Tuner from the input file.
Button Panel - Contains buttons to consume data from the input file.

Status Bar - Displays the current action as well as the status of the snapshot.

Initially no data is displayed in the import window. By clicking the > and the >> buttons, the data in the file on disk
is loaded and displayed in the window. Once data is displayed, it can be injected or disposed in the connected domain
and partition.

Data can be injected by selecting the desired sample followed by choosing Edit > Write in the menu bar of the import
window or by clicking the Write button at the bottom of the import window. To write all displayed data, choose Edit >
Write all from the menu bar of the import window.

To dispose data, select the desired sample in the import window followed by choosing Edit > Dispose in the menu bar
or by clicking the Dispose button at the bottom of the import window. To dispose all displayed data, choose Edit >
Dispose all from the menu bar of the import window.

Samples that are injected or disposed are removed from the view in the import window.

Information about the Register, WriteDispose and Unregister buttons can be found in the section /njecting Data Using
a Writer.

3.6.4.2 Existing Partition

Importing data in an existing partition almost works the same as importing it in its original partition. The only difference
is that the partition to import the data in can be chosen now. To import data into an existing partition choose Edit >
Import data > Existing Partition in the menu bar of the main window or right-click a partition entity in the entity tree
of the main window followed by selecting Import data in the popup menu that appears. Both of these actions result in
the display of the dialog window shown below.

Import Data (existing Partition) dialog

£ Import data (existing Partition) [= |
File |tnpicxm| H Browse ‘
Partition [partition [+]

Make selection []

| Ok || Cancel ‘

HPIease provide input. ‘

The File input field must specify the location of the data on disk.

The Partition field specifies the partition where the data must be imported in.

The Make selection allows importing a subset of the data in the file specified by the File input field.

The Import data action can be cancelled by clicking the Cancel button. In this case, no data will be imported.

When the OK button is clicked and the Make selection check box is unchecked, OpenSplice Tuner validates the specified
file. If the specified file is valid, all data in the file is imported into the original partition(s). If the Make selection check
box is checked when the OK button is clicked, the import window as illustrated earlier [44] is displayed.

By using the import window a subset of the data can be injected or disposed in the specified partition.

3.6. Exporting and Importing 45

Tuner Guide, Release 6.x

3.6.4.3 Partition Expression

Importing data in an existing partition almost works the same as importing it in its original partition and importing data
in an existing partition. When using a partition expression, it is possible to import data into all partitions that match a
specific expression.

To import data using a partition expression choose Edit > Import data > Partition expression in the menu bar of the
main window. This action results in the display of the dialog window shown below.

Import Data (Partition expression) dialog

|2] Import data (Partition expression) [= 8 =
File |Iup|c.xml | | Browse ‘

Partition |parminn ab*c |

Make selection []

Ok || Cancel ‘

HPIeaﬁe provide input. ‘

The File input field must specify the location of the data on disk.

The Partition field specifies a partition expression, which describes all partitions where the data must be imported in.
The Make selection allows importing a subset of the data in the file specified by the File input field.

The Import data action can be cancelled by clicking the Cancel button. In this case, no data will be imported.

When the OK button is clicked and the Make selection check box is unchecked, OpenSplice Tuner validates the specified
file and if so imports all data in the file into the original partition(s). If the Make selection check box is checked when
the OK button is clicked, the import window (The Import Window) is displayed. By using the import window a subset
of the data can be injected or disposed in the specified partition.

3.6. Exporting and Importing 46

Tuner Guide, Release 6.x

3.7 Preferences

OpenSplice Tuner remembers user preferences. These preferences are stored on disk in <USER_HOME>/.
ospl_tooling.properties.<OpenSplice Version>.

(The <USER_HOME> variable represents the home directory of the user). The preferences can be modified by choosing
Edit > Preferences in the menu bar of the main window. This action results in the display of a dialog to edit the
preferences.

Edit Preferences

(] Edit preferences
[WriterQoS | ReaderQos | PublisherQoS | SubscriberQoS
It

Attributes I Topic Filters 1

Auto update entity info (ms) ‘2000

Auto update entity tree (ms) [1 |
Default entity tree type [opic —— ¥]
Logging 1
Datatype content type
Display entity relations
Display internals

[Please provide input.

The Edit preferences dialog allows user to save preferences to disk, so they will be remembered when OpenSplice Tuner
is exited.

Once the options are set to the desired value, they can be saved by clicking the OK button. This action triggers Open-
Splice Tuner to save the preferences to disk. The dialog window is closed when the preferences have been saved
successfully. If the input is not correct, an error message appears in the status bar of the dialog window.

The Edit preferences action can be cancelled by clicking the Cancel button. In this case, the preferences will not be
saved.

The Edit preferences dialog has 6 tabs.
* The Attributes tab has seven configuration options (see also Attributes Tab).

» The Topic Filters tab provides filters to hide/show built-in topics in the different views (see also Topic Filters
Tab).

* There are four tabs for creating and editing Writer, Reader, Publisher and Subscriber QoS Profiles (see also QoS
Profiles).

3.7. Preferences 47

Tuner Guide, Release 6.x

3.7.1 Attributes Tab

3.7.1.1 Auto Update Entity information

This option determines whether the information in an entity information window is updated automatically and at what
frequency. This only applies to the status of the entity that is displayed in the Status tab of that window (see Status).
The value of this setting must be expressed in milliseconds. The value of the option must be >= 500 or -1. When -1
is supplied, no automatic updates are performed. With a value >= 500, an update is performed every value period. If
the value approaches 500, the intrusiveness of OpenSplice Tuner on OpenSplice increases.

The default value for this option is 2000.

3.7.1.2 Auto Update Entity Tree

This option determines whether the entity relations (see Entity Relationships) in the entity tree in the main window are
updated automatically and at what frequency.

The value of this setting must be expressed in milliseconds.

The value of this option must be >= 500 or -1. When -1 is supplied, no automatic updates are performed. With a
value >= 500, an update is performed every value period. If the value approaches 500, the intrusiveness of OpenSplice
Tuner on OpenSplice increases.

The default value for this option is "-1".

3.7.1.3 Default Entity Tree Type

This option determines the default view for the entity tree in the main window. There are three options:

"participant”, "topic" and "partition". The view can be changed during execution (see Entity Relationships).
The default value for this option is "topic".
3.7.1.4 Logging

This option can be used to log internal OpenSplice Tuner information.

A This setting is intended for OpenSplice Tuner engineering purposes only and should not be used.

The default value for this option is "".

3.7.1.5 Datatype Content Type

This option determines the default content type for the displaying of entity data types in the Data type tab of an entity
information window. There are two options: "text/plain” and "text/html". (See Dara Type.)

The default value for this option is "text/plain".

3.7. Preferences 48

Tuner Guide, Release 6.x

3.7.1.6 Display Entity Relations
This option determines whether entity relations are visible by default. There are two possibilities: "true" and
"false".

The default value for this option is "false".

3.7.1.7 Display Internals

This option determines whether OpenSplice internals are visible in the information that is shown by OpenSplice Tuner.
There are two possibilities for this option: "true" and "false".

When "true" is selected, internals are displayed; if "false" is selected, they are not.

This option currently only has impact on which attributes of an entity are displayed.

The default value for this option is "false".

3.7.2 Topic Filters Tab

The topic filters allow the user to hide and show built-in topics in the different views (Participant, Topic and Partition).

By default the specification (DCPS) built-in topics are shown, and the other topic filters for internal built-in product
topics are hidden. (CM, d_, q_, 1r_)

3.8 QoS Profiles

The OpenSplice Tuner can store QoS Profiles for the following entities:
e Writer
* Reader
* Publisher
* Subscriber

A QoS profile is a pre-defined set of QoS settings identified by a name. This set can be used when creating a writer,
reader, publisher or subscriber.

For each entity a seperate tab is available in all creation windows of the specified entities.

For the Writer and Reader a pre-defined QoS profile TopicQoS is automatically added. This profile contains all QoS
settings of the chosen Topic.

For the Publisher and Subscriber a pre-defined QoS profile DefaultQoS is automatically added. This profile is based
on the default qos settings as described in the DDS specification for the chosen entity. When creating and editing QoS
profiles through the Preferences window these default QoS Profiles are not displayed.

3.8. QoS Profiles 49

Tuner Guide, Release 6.x

3.8.1 QoS Profile window

A QoS profile window contains a drop-down list (Default Qos Profile) of defined QoS Profiles for that Entity.

.
The QoS Profile Window
|4 Edit preferences = X
Attributes | WriterQoS | ReaderQos | Qos | Qo |
Default Qos Profile WriterQos_1 -
Profile Actions: | New ‘ ‘ Save \ \ Save As ‘ ‘ Remove
] [DURABILITY kind TRANSIENT
] |[DEADLINE period 2147463647.2147463647
] |LATENCY_BUDGET |duration 0.0
[i7] |LIVELINES: kind
“[#] |LIVELINES: lease_duration

kind
RELIABILITY max_blocking_time

RELIABILITY synchronous
ESTINATION_ORDER __|ind

RESOURCE_LIMIT!
RESOURCE_LIMIT;
RESOURCE_LIMIT!

IFESPAN duration
] [USER_DATA value
] [OWNERSHIP — |kna
RENGTH |valug
 LIFECYCLE [autodispose_unregistered_instances _|true

| LIFECYCLE [autopurge_suspended_samples_delay [2747463647.2147463647
NRITER_DATA_LIFECYCLI instance_dela 2147483647.2147463647

0
2147483647 2147483647

|Please provide input

Below the drop-down list there is an action bar (Profile Actions) with four buttons. The rest of the window contains the
QoS table where all QoS settings can be viewed and changed.

The New button creates a new QoS profile based on the default qos settings as described in the DDS specification for
the chosen entity. When the New button is clicked, a dialog box appears for entering a name for the new profile.

A Two names are reserved for internal QoS settings: DefaultQoS and TopicQoS; these names cannot be used for
user-created QoS profiles.

The Save button saves the QoS settings as shown in the QoS table to the currently-selected QoS Profile.
The Save As button saves the QoS settings as shown in the QoS table to a new QoS profile.

When the Save As button is clicked, a dialog box appears for entering a name for the new profile.

A Two names are reserved for internal QoS settings: DefaultQoS and TopicQoS; these names cannot be used for
user-created QoS profiles.

The Remove button removes the currently-selected QoS profile from the QoS Profile list.
All QoS fields in the QoS table have a checkbox in front of them which determines whether the field is editable:

o If the checkbox is checked the value cannot be edited and will automatically get the value as defined in the
selected QoS profile.

* If the checkbox is *un*checked the QoS field will get the value that is currently set in that field when the QoS
profile is saved or the entity is created.

All QoS profiles are stored in the Tuner Preferences file in <USER_HOME>/.ospl_tooling.properties.
<OpenSplice Version> where <USER_HOME> represents the home directory of the user.

3.8. QoS Profiles 50

Tuner Guide, Release 6.x

3.9 Support for Google Protocol Buffers

3.9.1 About Google Protocol Buffers in Tuner

In versions of Vortex OpenSplice that support Google Protocol Buffers, Tuner is able to read from protocol buffer topics
and display its samples as regular field name and value pairs, just as if it were from a regular IDL-defined topic.

The Tuner feature for Google Protocol Buffer topic reading is enabled only on Vortex OpenSplice middleware installs
where Google Protocol Buffer support is included. For installations where it is not included, the feature is disabled in
Tuner.

Tuner’s About dialog shows if the feature is available in the current build. It is accessible from the main window menu
bar File -> About.

About Dialog

About ﬁ

& Local CM AP 6.6.3, build c826400/20786d5
Connected CM APL 6.6.3, build c826400/20786d5
CM status: Version Match
Google Protobuf support: Available

3.9.2 Viewing type evolutions

The main feature of using Google Protocol Buffers as the type definition for a topic is the ability to change, or ‘evolve’,
a topic’s type. Tuner can become aware of changes to a protocol buffer topic’s type, and can display the topic type
definition for each type evolution that is registered.

To view the type evolutions for a protocol buffer backed topic, right-click a topic, reader, or writer element in the entity
tree, choose Display Entity, and navigate to the Data Type tab. For this case, the Data Type tab displays some additional
information.

* The Type Evolutions for the type are displayed in a drop-down combo box. It lists the known evolutions for the
type according to the time it was registered in the DDS system. The most recent evolution is at the top of the list
and is selected by default.

» The Type Hash is a non-editable text field that displays the 128-bit hash that uniquely identifies the selected type
evolution for the topic type.

* The main text area now displays a description for all fields and nested types defined in the protocol buffer message
for the currently-selected evolution, in a text format emulating the original .proto file format. Message type
fields found in the typedef that are not defined as nested messages inside the main DDS message type are defined
under a separate section, External Definitions. These messages have their fully- qualified type name to
indicate where they were defined. Please note that this typedef reconstruction is only meant to give the user an
idea as to what type of data is found in the topic type. It is not guaranteed to be a 100% reconstruction of the
original .proto file as it was written, or to be compilable by the protoc compiler.

Protocol Buffer Type Definition

3.9. Support for Google Protocol Buffers 51

Tuner Guide, Release 6.x

package address;

message Person {
option (.omg.dds type) = {name: "dds.Person}

required string name = 1 [{.omg.dds. member) = {key: true}];
required int32 age = 2 [omg.dds. member) = {filterable: true}];
optional string email = 3;

repeated PhoneMNumber phone = 4;

required Organisation worksFor = 5;

message PhoneMumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME],
}

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK=2;
}
H

i External definitions

message address.Organisation {
required string name = 1 [{.omg.dds. member) = {key: true}];
required string address = 2 [(.omg.dds. member) = {filterable: truej];
optional PhoneNumber phone = 3;

H

r o
|| Tapic: Person | Entity info @M
File Edit View
Attributes | Status | QoS | Datatype | Statistics |
Type Name address:dds:Person
Type Evolutions [Tue Apr 26 16:50:08 EDT 2016 [~]
Type Hash 143041311330450493219492606839503972168

3.9.3 Reading protocol buffer topics

ﬂ HTML data type representation is not available for Protocol Buffer topics.

Tuner reads protocol buffer data by reading in the byte sequence data contained in the user data, and then replacing
all fields with regular field name and value pairs just as if it were data from a regular topic. The process for creating
readers for protocol buffer topics is almost identical to the process described in Section 3.5.5, Creating a ReaderWriter.

If creating a reader-writer on a protocol buffer backed topic, the Create Reader-Writer Dialog will have an extra combo
box input, allowing the user to select which type evolution to view the user data as. The default selection is the most
recently registered version of the type in the DDS system.

Create ReaderWriter Dialog With Type Evolution Chooser

| 2] Create reader-writer (existing partition) L=l I
Attributes | WriterQoS |” ReaderGoS | Qos | Qos |]
Partition [<DEFAULT> [+]
Topic [Person [~]
wait_for_historical_data]
Type Evolutions Mon May 30 10:13:39 EDT 2016 [=][View type definition
lMon May 30 10:13:39 EDT 2016
Mon May 30 10:13:37 EDT 2016
i
Please provide input.

3.9. Support for Google Protocol Buffers

52

Tuner Guide, Release 6.x

If selecting to read or write data on an existing reader or writer by choosing Read data or Make database snapshot for
a reader, or Write data or Make history snapshot for a writer, a choice must be made as to what type evolution to view
the data as, if the associated topic type is a protocol buffer defined type.

Read Data As Type Evolution Chooser

| 2| Read data ... o= e]
Type Evolutions [Mon May 30 10:13:39 EDT 2016 [*|[Viewtypedefinition |
Please provide input.

There is also a View Type Definition button in both dialogs that when clicked, brings up a new window showing the
type definition text for the currently selected type evolution, as well as the registration time and type hash in the status
bar. The window remains if the dialog is closed, and is reused with the contents updated if a different topic or type
evolution is chosen for view.

View Type Evolution Type Definiton

-2 Topic: Person | Type Evclution Definiton = | B S|

package address; =

message Person{
option (.emg.dds.type) = {name: “dds Person’y

required string name = 1 [(.omg.dds.member) = {key: fruejl; i
required int32 age = 2 (.omg.dds.member) = {filterable: truel];
optional string email = 3;

repeated PhoneNumber phone = 4;

required Organisation worksFor = 5;

message PhoneNumber {
required string number = 1 -

Mon May 30 15:14:38 EDT 2016 (1430413113304504932194926068 39503972168)

Once selections are complete and the reader or writer window appears, the user data model is populated with type fields
and values that are decoded according to the type evolution that was chosen. An additional table highlight colour is
shown in cyan where fields are defined as required in the protobuf type definiton. Topic key fields are still coloured
green and are implied to be requried. All other unhighlighted fields are optional fields.

Aside from the above table changes, all interaction with the user data is the same as if it were being read or written
from a regular topic.

A Reader-Writer Window for a Protocol Buffer backed Topic

|| Person@ | ReaderWiter (take mode) oo 0 [t]
File Edit View

altribute value
sample_siate NOT_READ -
view_state NEW =|
instance_state ALIVE
valid_dala [TRUE
| count 0 = I

| Field name Field value
Iname Jane Doe

23

jane doe@somedomain com
worksFor.name Acme Corporation
worksForaddress Wayne Manor, Gotham Gity
worksFor phone number 9876543210

worksFor phone type WORK

L i< JL = Jle=] [

|_Register |[wmte |[Dispose || |[__unregister |

3.9. Support for Google Protocol Buffers 53

CHAPTER
FOUR

4.1 Contacts

ADLINK Technology Corporation
400 TradeCenter

Suite 5900

Woburn, MA

01801

USA

Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge

5th Avenue

Team Valley

Gateshead

NE11 0XA

UK

Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand

91400 Orsay

France

Tel: +33 (1) 69 015354

Web: https://www.adlinktech.com/en/data-distribution-service
Contact: https://www.adlinktech.com/en/data-distribution-service
E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/

Twitter: https://twitter.com/ADLINKTech_usa

Facebook: https://www.facebook.com/ ADLINKTECH

CONTACTS & NOTICES

54

https://www.adlinktech.com/en/data-distribution-service
https://www.adlinktech.com/en/data-distribution-service
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

Tuner Guide, Release 6.x

4.2 Notices

Copyright © 2021 ADLINK Technology Limited. All rights reserved.

This document may be reproduced in whole but not in part. The information contained in this document is subject to
change without notice and is made available in good faith without liability on the part of ADLINK Technology Limited.

All trademarks acknowledged.

4.2. Notices 55

	Preface
	About The Vortex OpenSplice Tuner Guide
	Intended Audience
	Organisation
	Conventions

	Introduction
	General Description

	Using the Vortex OpenSplice Tuner
	Starting and Stopping the Tuner
	Starting Tuner Using Launcher
	Starting Tuner Using Command Line
	Solaris and Linux
	Windows

	Graphical User Interface Conventions
	Main Window
	Shutdown

	Connection Management
	Connection Types
	Open a Connection
	Connection History

	Close a Connection

	Entity Information
	Attributes
	Status
	QoS
	Inspect QoS
	Modify QoS

	Data Type
	Statistics

	Entity Relationships
	Enable and Disable Displaying Relationships
	Refresh Relationships

	Data Injection and Consumption
	Creating a Publisher
	Creating a Writer
	Creating a subscriber
	Creating a Reader
	Creating a ReaderWriter
	Partition Expression
	Existing Partition

	Creating a Snapshot of a Reader Database
	Creating a Snapshot of Writer History Cache
	Delete Entity
	Injecting Data
	Injecting Data Using a Writer
	Injecting Data Using a Reader-Writer
	Detailed Reader-Writer window

	Consuming Data
	Consuming Data Using a Reader
	Sample Information View
	User Data View
	Show details of data that contains a collection type
	Sorting Data
	Filters
	Reordering Columns
	Removing Columns
	Consumption Mode
	Monitoring
	Clear Data

	Inspecting Data in a Reader Database Snapshot
	Inspecting Data in a Writer History Snapshot
	Consuming Data Using a Reader-Writer
	Injecting and Consuming Data With Coherent and Ordered Access
	Publishing Coherent Sets
	Access Data On Readers

	Exporting and Importing
	Export Metadata
	Export Data
	Existing Partition
	Partition Expression
	From Existing Reader

	Import Metadata
	Import Data
	Original Partition(s)
	Existing Partition
	Partition Expression

	Preferences
	Attributes Tab
	Auto Update Entity information
	Auto Update Entity Tree
	Default Entity Tree Type
	Logging
	Datatype Content Type
	Display Entity Relations
	Display Internals

	Topic Filters Tab

	QoS Profiles
	QoS Profile window

	Support for Google Protocol Buffers
	About Google Protocol Buffers in Tuner
	Viewing type evolutions
	Reading protocol buffer topics

	Contacts & Notices
	Contacts
	Notices

